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Behaviors involve evalua0ng whether ac0ons are worth the effort

“Q Train” Nigel Van Wieck, 1990Hopelessness



Hopelessness is seen in many experimental seSngs involving persistent stress

Forced swim paradigm

Passive coping

Kicking (Coil V)

60 s

Behavioral response to adversity

Ac0ve coping



Rats

COMPUTATIONAL MODELS

Mice

Toy models

Larval 
zebrafish

Human

Hopelessness is seen in many experimental seSngs involving persistent stress  Are any circuit mechanisms conserved (+ where they diverge)?

Neural dynamics-level RNNs: Perich & Rajan, CoNEUR, 2020; Andalman, … , Rajan, and Deisseroth, Cell, 2019; Rajan, Harvey and Tank, Neuron, 2016  
Behavior-level RNNs: Yang, Cole, Rajan, COBEHA, 2019; Insanally,…,Rajan et al, eLife, 2019; Pinto, Rajan et al, Neuron, 2019  
In Prep & Review: Perich,…, Deisseroth & Rajan, BioRxiv, 2020; Young, …, Rajan & Rudebeck, BioRxiv, 2020; Benster, …,Rajan* & Deisseroth*, in preparation 

My approach is to build Computa0onal Models

1. constrained directly by experimental 
data, and 

2. analyze them using new methods and 
similar ones as those used on data 

3. infer circuit mechanisms inaccessible 
from measurements

 Neural Networks



Hopelessness is seen in many experimental seSngs involving persistent stress

Forced swim paradigm

Passive coping

Kicking (Coil V)

60 s

Behavioral response to adversity

Ac0ve coping

Mouse neurobiology in passive coping and similar states

mPFC: Warden et al., 2012; Hamani et al., 2010; Maier 
and Watkins, 2010 
Septum: Singewald et al. 2010; Anthony et al., 2014 
NAc: Shabel et al., 2012; Stephenson-Jones et al., 2016 
PAG: Bandler et al., 2000 
Hypothalamus: Wang et al. 2015 
DRN Raphe: Roche et al., 2003; Yang et al., 2008 
VTA: Stamatakis et al., 2012; Tye et al., 2013 
Habenula: Li et al. 2011; Li et al. 2013; Shumake et al., 
2004; Dolman et al., 2016



Extract mechanisms and principles from smaller brains with more access…

Andalman, … , Rajan, and Deisseroth, Cell, 2019 
All zebrafish data courtesy Deisseroth lab, Stanford

Larval zebrafish neurobiologyLarval Zebrafish

McLean and Fetcho, 2004; Hikosaka, 2010; Amo et al., 2010; Okamoto et al., 2012; LoveI-Baron et al., 2017



… scale the approach to larger brains to look for similar or divergent mechanisms

Andalman, … , Rajan, and Deisseroth, Cell, 2019 
All zebrafish data courtesy Deisseroth lab, Stanford

Homologies with mammalian systemLarval Zebrafish

Mouse neurobiology in passive coping and similar states

McLean and Fetcho, 2004; Hikosaka, 2010; Amo et al., 2010; Okamoto et al., 2012; LoveI-Baron et al., 2017



Tracking of behavior + neural ac0vity brain-wide at cellular resolu0on

Inescapable stress

Control zebrafish Passive coping
(maladaptive) zebrafish

A. Experimental paradigm: Behavioral challenge causes adaptive to maladaptive transition

Actively coping
(adaptive) zebrafish
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Andalman, … , Rajan, and Deisseroth, 2019 
All zebrafish data courtesy Deisseroth lab, Stanford



Main neural findings (population activity) from data

Andalman, … , Rajan, and Deisseroth, 2019

1. Steady increase in habenula (Hb) ac0va0on 

2. Suppression of ac0vity in the raphe (known to be downstream of Hb)
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Andalman, … , Rajan, and Deisseroth, 2019

Tracking of behavior + neural ac0vity brain-wide at cellular resolu0on



Rats

COMPUTATIONAL MODELS

Mice

Toy models

Larval 
zebrafish

Human

Ques0on: What brain-wide mechanism mediates acKve- to passive coping in zebrafish?

Neural dynamics-level RNNs: Perich & Rajan, CoNEUR, 2020; Andalman, … , Rajan, and Deisseroth, Cell, 2019; Rajan, Harvey and Tank, Neuron, 2016  
Behavior-level RNNs: Yang, Cole, Rajan, COBEHA, 2019; Insanally,…,Rajan et al, eLife, 2019; Pinto, Rajan et al, Neuron, 2019  
In Prep & Review: Perich,…, Deisseroth & Rajan, BioRxiv, 2020; Young, …, Rajan & Rudebeck, BioRxiv, 2020; Benster, …,Rajan* & Deisseroth*, in preparation 

My approach is to build Computa0onal Models

1. constrained directly by experimental 
data, and 

2. analyze them using new methods and 
similar ones as those used on data 

3. infer circuit mechanisms inaccessible 
from measurements

 Neural Networks



1. From single region- to multi-region Recurrent Neural Networks (RNNs)

RNN C

RNN A

RNN B
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Rajan & AbboQ, with Sompolinsky, 2010a–c, 11



Multi-region RNNs capture both within & inter-area interactions

RNN C

RNN A

RNN B
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2. Train activity of model units to match neural data directly

RNN C

RNN A

RNN B

 Inter-area
projections

recurrent
connections

inter-area
projections

REGION 1

REGION 2

Effective connectivity

REGION 3
learning error

s

activity of unit 
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Ca2+ data
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 Nwb, network size

 Nwb
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update for matrix ¨Jij (t)
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Learning algorithm 
Recursive least squares (RLS)

Neural dynamics-level RNNs: Perich & Rajan, CoNEUR, 2020; Andalman, … , Rajan, and Deisseroth, Cell, 2019; Rajan, Harvey and Tank, Neuron, 2016  
Behavior-level RNNs: Yang, Cole, Rajan, COBEHA, 2019; Insanally,…,Rajan et al, eLife, 2019; Pinto, Rajan et al, Neuron, 2019  
In Prep & Review: Perich,…, Deisseroth & Rajan, BioRxiv, 2020; Young, …, Rajan & Rudebeck, BioRxiv, 2020; Benster, …,Rajan* & Deisseroth*, in preparation 



1. Mul?-region RNN model that produces 
realis?c neural dynamics 

2. Inference of consistent brain-wide 
“directed interac?ons” 

3. Currents due to recurrence within and 
between areas

RNN C

RNN A

RNN B

 Inter-area
projections

Neural dynamics-level RNNs: Perich & Rajan, CoNEUR, 2020; Andalman, … , Rajan, and Deisseroth, Cell, 2019; Rajan, Harvey and Tank, Neuron, 2016  
Behavior-level RNNs: Yang, Cole, Rajan, COBEHA, 2019; Insanally,…,Rajan et al, eLife, 2019; Pinto, Rajan et al, Neuron, 2019  
In Prep & Review: Perich,…, Deisseroth & Rajan, BioRxiv, 2020; Young, …, Rajan & Rudebeck, BioRxiv, 2020; Benster, …,Rajan* & Deisseroth*, in preparation 

What we gain from multi-region RNNs constrained directly by data

Quan00es inaccessible from measurements alone!



Ac0va0ons similar to data

Directed Interac0ons matrix

Current-Based Decomposition of Population Activity (CURBD)

Currents due to  
recurrent 
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Main neural findings (population activity) from data

Andalman, … , Rajan, and Deisseroth, 2019

1. Steady increase in habenula (Hb) ac0va0on 

2. Suppression of ac0vity in the raphe (known to be downstream of Hb)

Ques0on: Is there a “cortex” in the zebrafish responsible for shuUng down movement?



MULTI-REGION RNN OF LARVAL ZEBRAFISHA.
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Figure 7. Preliminary Results: Smaller, highly sampled brains
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Untangling inter-area communication using multi-region RNN model of zebrafish.  A. Three 
interconnected RNNs representing Hb (blue), Ra (red), and Tel (yellow) were intialized with random 
connectivity [as described in D4a, see also Fig 2] and trained to match Ca2+ activity imaged in the 
three regions while larval zebrafish swam away from a periodic stimulus (behavioral outputs not 
shown). B. Example units in Hb (blue), Ra (red), and Tel (yellow) modules shown along with the 
targets (grey). C. Activity of 4139 units over 400s in the three-region RNN projected into the largest 
3 principal components (PCs) (top), model captures 90% of the variance of data (bottom). Data 
(grey) and model outputs (red) D. DI matrx inferred from the Hb-Ra-Tel multi-region RNN model 
and log prob density of one illustrative block in the matrix. We chose the block corresponding to the 
projection from Ra to Hb early (red), stimulus period (grey) and late decision (blue) (p < 0.001%). 
There is no known direct projection from Ra to Hb, only those from Hb to Ra; however the model 
made a prediction that these feedback interactions exist and are strengthened (0 means, std dev 
indicates strength) during the task. E. CURBD analysis decomposed the three component 
subcurrents that comprise the observed activity in the Hb (top). PCA on the 3 subcurrents (left) 
showed that early in the experiment, activity occupies the Ra to Hb subspace and later in the 
experiment within-Hb and Tel to Hb subspaces get involved. Subcurrents over time, averaged over 
5 models based on different fish, also confirm this trend (in grey is the tail movement of one fish to 
indicate time scale). Findings in D and E collectively point to early changes driven by currents in 
the Ra-Hb subspace with no concommitant change in direction or magnitude of inter-area 
interactions. Later changes are driven by DI changes from Ra to Hb, suggesting a possible 
plasticity mechanism, and currents within Hb and from Tel to Hb. 

RaHbTel
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Untangling inter-area communication using multi-region RNN model of zebrafish.  A. Three 
interconnected RNNs representing Hb (blue), Ra (red), and Tel (yellow) were intialized with random 
connectivity [as described in D4a, see also Fig 2] and trained to match Ca2+ activity imaged in the 
three regions while larval zebrafish swam away from a periodic stimulus (behavioral outputs not 
shown). B. Example units in Hb (blue), Ra (red), and Tel (yellow) modules shown along with the 
targets (grey). C. Activity of 4139 units over 400s in the three-region RNN projected into the largest 
3 principal components (PCs) (top), model captures 90% of the variance of data (bottom). Data 
(grey) and model outputs (red) D. DI matrx inferred from the Hb-Ra-Tel multi-region RNN model 
and log prob density of one illustrative block in the matrix. We chose the block corresponding to the 
projection from Ra to Hb early (red), stimulus period (grey) and late decision (blue) (p < 0.001%). 
There is no known direct projection from Ra to Hb, only those from Hb to Ra; however the model 
made a prediction that these feedback interactions exist and are strengthened (0 means, std dev 
indicates strength) during the task. E. CURBD analysis decomposed the three component 
subcurrents that comprise the observed activity in the Hb (top). PCA on the 3 subcurrents (left) 
showed that early in the experiment, activity occupies the Ra to Hb subspace and later in the 
experiment within-Hb and Tel to Hb subspaces get involved. Subcurrents over time, averaged over 
5 models based on different fish, also confirm this trend (in grey is the tail movement of one fish to 
indicate time scale). Findings in D and E collectively point to early changes driven by currents in 
the Ra-Hb subspace with no concommitant change in direction or magnitude of inter-area 
interactions. Later changes are driven by DI changes from Ra to Hb, suggesting a possible 
plasticity mechanism, and currents within Hb and from Tel to Hb. 

Three-region RNN model of the neural dynamics in the larval zebrafish
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Untangling inter-area communication using multi-region RNN model of zebrafish.  A. Three 
interconnected RNNs representing Hb (blue), Ra (red), and Tel (yellow) were intialized with random 
connectivity [as described in D4a, see also Fig 2] and trained to match Ca2+ activity imaged in the 
three regions while larval zebrafish swam away from a periodic stimulus (behavioral outputs not 
shown). B. Example units in Hb (blue), Ra (red), and Tel (yellow) modules shown along with the 
targets (grey). C. Activity of 4139 units over 400s in the three-region RNN projected into the largest 
3 principal components (PCs) (top), model captures 90% of the variance of data (bottom). Data 
(grey) and model outputs (red) D. DI matrx inferred from the Hb-Ra-Tel multi-region RNN model 
and log prob density of one illustrative block in the matrix. We chose the block corresponding to the 
projection from Ra to Hb early (red), stimulus period (grey) and late decision (blue) (p < 0.001%). 
There is no known direct projection from Ra to Hb, only those from Hb to Ra; however the model 
made a prediction that these feedback interactions exist and are strengthened (0 means, std dev 
indicates strength) during the task. E. CURBD analysis decomposed the three component 
subcurrents that comprise the observed activity in the Hb (top). PCA on the 3 subcurrents (left) 
showed that early in the experiment, activity occupies the Ra to Hb subspace and later in the 
experiment within-Hb and Tel to Hb subspaces get involved. Subcurrents over time, averaged over 
5 models based on different fish, also confirm this trend (in grey is the tail movement of one fish to 
indicate time scale). Findings in D and E collectively point to early changes driven by currents in 
the Ra-Hb subspace with no concommitant change in direction or magnitude of inter-area 
interactions. Later changes are driven by DI changes from Ra to Hb, suggesting a possible 
plasticity mechanism, and currents within Hb and from Tel to Hb. 

Looking at currents from the same or different areas using CURBD
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Untangling inter-area communication using multi-region RNN model of zebrafish.  A. Three 
interconnected RNNs representing Hb (blue), Ra (red), and Tel (yellow) were intialized with random 
connectivity [as described in D4a, see also Fig 2] and trained to match Ca2+ activity imaged in the 
three regions while larval zebrafish swam away from a periodic stimulus (behavioral outputs not 
shown). B. Example units in Hb (blue), Ra (red), and Tel (yellow) modules shown along with the 
targets (grey). C. Activity of 4139 units over 400s in the three-region RNN projected into the largest 
3 principal components (PCs) (top), model captures 90% of the variance of data (bottom). Data 
(grey) and model outputs (red) D. DI matrx inferred from the Hb-Ra-Tel multi-region RNN model 
and log prob density of one illustrative block in the matrix. We chose the block corresponding to the 
projection from Ra to Hb early (red), stimulus period (grey) and late decision (blue) (p < 0.001%). 
There is no known direct projection from Ra to Hb, only those from Hb to Ra; however the model 
made a prediction that these feedback interactions exist and are strengthened (0 means, std dev 
indicates strength) during the task. E. CURBD analysis decomposed the three component 
subcurrents that comprise the observed activity in the Hb (top). PCA on the 3 subcurrents (left) 
showed that early in the experiment, activity occupies the Ra to Hb subspace and later in the 
experiment within-Hb and Tel to Hb subspaces get involved. Subcurrents over time, averaged over 
5 models based on different fish, also confirm this trend (in grey is the tail movement of one fish to 
indicate time scale). Findings in D and E collectively point to early changes driven by currents in 
the Ra-Hb subspace with no concommitant change in direction or magnitude of inter-area 
interactions. Later changes are driven by DI changes from Ra to Hb, suggesting a possible 
plasticity mechanism, and currents within Hb and from Tel to Hb. 
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Untangling inter-area communication using multi-region RNN model of zebrafish.  A. Three 
interconnected RNNs representing Hb (blue), Ra (red), and Tel (yellow) were intialized with random 
connectivity [as described in D4a, see also Fig 2] and trained to match Ca2+ activity imaged in the 
three regions while larval zebrafish swam away from a periodic stimulus (behavioral outputs not 
shown). B. Example units in Hb (blue), Ra (red), and Tel (yellow) modules shown along with the 
targets (grey). C. Activity of 4139 units over 400s in the three-region RNN projected into the largest 
3 principal components (PCs) (top), model captures 90% of the variance of data (bottom). Data 
(grey) and model outputs (red) D. DI matrx inferred from the Hb-Ra-Tel multi-region RNN model 
and log prob density of one illustrative block in the matrix. We chose the block corresponding to the 
projection from Ra to Hb early (red), stimulus period (grey) and late decision (blue) (p < 0.001%). 
There is no known direct projection from Ra to Hb, only those from Hb to Ra; however the model 
made a prediction that these feedback interactions exist and are strengthened (0 means, std dev 
indicates strength) during the task. E. CURBD analysis decomposed the three component 
subcurrents that comprise the observed activity in the Hb (top). PCA on the 3 subcurrents (left) 
showed that early in the experiment, activity occupies the Ra to Hb subspace and later in the 
experiment within-Hb and Tel to Hb subspaces get involved. Subcurrents over time, averaged over 
5 models based on different fish, also confirm this trend (in grey is the tail movement of one fish to 
indicate time scale). Findings in D and E collectively point to early changes driven by currents in 
the Ra-Hb subspace with no concommitant change in direction or magnitude of inter-area 
interactions. Later changes are driven by DI changes from Ra to Hb, suggesting a possible 
plasticity mechanism, and currents within Hb and from Tel to Hb. 
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Untangling inter-area communication using multi-region RNN model of zebrafish.  A. Three 
interconnected RNNs representing Hb (blue), Ra (red), and Tel (yellow) were intialized with random 
connectivity [as described in D4a, see also Fig 2] and trained to match Ca2+ activity imaged in the 
three regions while larval zebrafish swam away from a periodic stimulus (behavioral outputs not 
shown). B. Example units in Hb (blue), Ra (red), and Tel (yellow) modules shown along with the 
targets (grey). C. Activity of 4139 units over 400s in the three-region RNN projected into the largest 
3 principal components (PCs) (top), model captures 90% of the variance of data (bottom). Data 
(grey) and model outputs (red) D. DI matrx inferred from the Hb-Ra-Tel multi-region RNN model 
and log prob density of one illustrative block in the matrix. We chose the block corresponding to the 
projection from Ra to Hb early (red), stimulus period (grey) and late decision (blue) (p < 0.001%). 
There is no known direct projection from Ra to Hb, only those from Hb to Ra; however the model 
made a prediction that these feedback interactions exist and are strengthened (0 means, std dev 
indicates strength) during the task. E. CURBD analysis decomposed the three component 
subcurrents that comprise the observed activity in the Hb (top). PCA on the 3 subcurrents (left) 
showed that early in the experiment, activity occupies the Ra to Hb subspace and later in the 
experiment within-Hb and Tel to Hb subspaces get involved. Subcurrents over time, averaged over 
5 models based on different fish, also confirm this trend (in grey is the tail movement of one fish to 
indicate time scale). Findings in D and E collectively point to early changes driven by currents in 
the Ra-Hb subspace with no concommitant change in direction or magnitude of inter-area 
interactions. Later changes are driven by DI changes from Ra to Hb, suggesting a possible 
plasticity mechanism, and currents within Hb and from Tel to Hb. 
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Untangling inter-area communication using multi-region RNN model of zebrafish.  A. Three 
interconnected RNNs representing Hb (blue), Ra (red), and Tel (yellow) were intialized with random 
connectivity [as described in D4a, see also Fig 2] and trained to match Ca2+ activity imaged in the 
three regions while larval zebrafish swam away from a periodic stimulus (behavioral outputs not 
shown). B. Example units in Hb (blue), Ra (red), and Tel (yellow) modules shown along with the 
targets (grey). C. Activity of 4139 units over 400s in the three-region RNN projected into the largest 
3 principal components (PCs) (top), model captures 90% of the variance of data (bottom). Data 
(grey) and model outputs (red) D. DI matrx inferred from the Hb-Ra-Tel multi-region RNN model 
and log prob density of one illustrative block in the matrix. We chose the block corresponding to the 
projection from Ra to Hb early (red), stimulus period (grey) and late decision (blue) (p < 0.001%). 
There is no known direct projection from Ra to Hb, only those from Hb to Ra; however the model 
made a prediction that these feedback interactions exist and are strengthened (0 means, std dev 
indicates strength) during the task. E. CURBD analysis decomposed the three component 
subcurrents that comprise the observed activity in the Hb (top). PCA on the 3 subcurrents (left) 
showed that early in the experiment, activity occupies the Ra to Hb subspace and later in the 
experiment within-Hb and Tel to Hb subspaces get involved. Subcurrents over time, averaged over 
5 models based on different fish, also confirm this trend (in grey is the tail movement of one fish to 
indicate time scale). Findings in D and E collectively point to early changes driven by currents in 
the Ra-Hb subspace with no concommitant change in direction or magnitude of inter-area 
interactions. Later changes are driven by DI changes from Ra to Hb, suggesting a possible 
plasticity mechanism, and currents within Hb and from Tel to Hb. 
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Untangling inter-area communication using multi-region RNN model of zebrafish.  A. Three 
interconnected RNNs representing Hb (blue), Ra (red), and Tel (yellow) were intialized with random 
connectivity [as described in D4a, see also Fig 2] and trained to match Ca2+ activity imaged in the 
three regions while larval zebrafish swam away from a periodic stimulus (behavioral outputs not 
shown). B. Example units in Hb (blue), Ra (red), and Tel (yellow) modules shown along with the 
targets (grey). C. Activity of 4139 units over 400s in the three-region RNN projected into the largest 
3 principal components (PCs) (top), model captures 90% of the variance of data (bottom). Data 
(grey) and model outputs (red) D. DI matrx inferred from the Hb-Ra-Tel multi-region RNN model 
and log prob density of one illustrative block in the matrix. We chose the block corresponding to the 
projection from Ra to Hb early (red), stimulus period (grey) and late decision (blue) (p < 0.001%). 
There is no known direct projection from Ra to Hb, only those from Hb to Ra; however the model 
made a prediction that these feedback interactions exist and are strengthened (0 means, std dev 
indicates strength) during the task. E. CURBD analysis decomposed the three component 
subcurrents that comprise the observed activity in the Hb (top). PCA on the 3 subcurrents (left) 
showed that early in the experiment, activity occupies the Ra to Hb subspace and later in the 
experiment within-Hb and Tel to Hb subspaces get involved. Subcurrents over time, averaged over 
5 models based on different fish, also confirm this trend (in grey is the tail movement of one fish to 
indicate time scale). Findings in D and E collectively point to early changes driven by currents in 
the Ra-Hb subspace with no concommitant change in direction or magnitude of inter-area 
interactions. Later changes are driven by DI changes from Ra to Hb, suggesting a possible 
plasticity mechanism, and currents within Hb and from Tel to Hb. 

State space view of how the three source currents evolve…
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Untangling inter-area communication using multi-region RNN model of zebrafish.  A. Three 
interconnected RNNs representing Hb (blue), Ra (red), and Tel (yellow) were intialized with random 
connectivity [as described in D4a, see also Fig 2] and trained to match Ca2+ activity imaged in the 
three regions while larval zebrafish swam away from a periodic stimulus (behavioral outputs not 
shown). B. Example units in Hb (blue), Ra (red), and Tel (yellow) modules shown along with the 
targets (grey). C. Activity of 4139 units over 400s in the three-region RNN projected into the largest 
3 principal components (PCs) (top), model captures 90% of the variance of data (bottom). Data 
(grey) and model outputs (red) D. DI matrx inferred from the Hb-Ra-Tel multi-region RNN model 
and log prob density of one illustrative block in the matrix. We chose the block corresponding to the 
projection from Ra to Hb early (red), stimulus period (grey) and late decision (blue) (p < 0.001%). 
There is no known direct projection from Ra to Hb, only those from Hb to Ra; however the model 
made a prediction that these feedback interactions exist and are strengthened (0 means, std dev 
indicates strength) during the task. E. CURBD analysis decomposed the three component 
subcurrents that comprise the observed activity in the Hb (top). PCA on the 3 subcurrents (left) 
showed that early in the experiment, activity occupies the Ra to Hb subspace and later in the 
experiment within-Hb and Tel to Hb subspaces get involved. Subcurrents over time, averaged over 
5 models based on different fish, also confirm this trend (in grey is the tail movement of one fish to 
indicate time scale). Findings in D and E collectively point to early changes driven by currents in 
the Ra-Hb subspace with no concommitant change in direction or magnitude of inter-area 
interactions. Later changes are driven by DI changes from Ra to Hb, suggesting a possible 
plasticity mechanism, and currents within Hb and from Tel to Hb. 
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Untangling inter-area communication using multi-region RNN model of zebrafish.  A. Three 
interconnected RNNs representing Hb (blue), Ra (red), and Tel (yellow) were intialized with random 
connectivity [as described in D4a, see also Fig 2] and trained to match Ca2+ activity imaged in the 
three regions while larval zebrafish swam away from a periodic stimulus (behavioral outputs not 
shown). B. Example units in Hb (blue), Ra (red), and Tel (yellow) modules shown along with the 
targets (grey). C. Activity of 4139 units over 400s in the three-region RNN projected into the largest 
3 principal components (PCs) (top), model captures 90% of the variance of data (bottom). Data 
(grey) and model outputs (red) D. DI matrx inferred from the Hb-Ra-Tel multi-region RNN model 
and log prob density of one illustrative block in the matrix. We chose the block corresponding to the 
projection from Ra to Hb early (red), stimulus period (grey) and late decision (blue) (p < 0.001%). 
There is no known direct projection from Ra to Hb, only those from Hb to Ra; however the model 
made a prediction that these feedback interactions exist and are strengthened (0 means, std dev 
indicates strength) during the task. E. CURBD analysis decomposed the three component 
subcurrents that comprise the observed activity in the Hb (top). PCA on the 3 subcurrents (left) 
showed that early in the experiment, activity occupies the Ra to Hb subspace and later in the 
experiment within-Hb and Tel to Hb subspaces get involved. Subcurrents over time, averaged over 
5 models based on different fish, also confirm this trend (in grey is the tail movement of one fish to 
indicate time scale). Findings in D and E collectively point to early changes driven by currents in 
the Ra-Hb subspace with no concommitant change in direction or magnitude of inter-area 
interactions. Later changes are driven by DI changes from Ra to Hb, suggesting a possible 
plasticity mechanism, and currents within Hb and from Tel to Hb. 
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Untangling inter-area communication using multi-region RNN model of zebrafish.  A. Three 
interconnected RNNs representing Hb (blue), Ra (red), and Tel (yellow) were intialized with random 
connectivity [as described in D4a, see also Fig 2] and trained to match Ca2+ activity imaged in the 
three regions while larval zebrafish swam away from a periodic stimulus (behavioral outputs not 
shown). B. Example units in Hb (blue), Ra (red), and Tel (yellow) modules shown along with the 
targets (grey). C. Activity of 4139 units over 400s in the three-region RNN projected into the largest 
3 principal components (PCs) (top), model captures 90% of the variance of data (bottom). Data 
(grey) and model outputs (red) D. DI matrx inferred from the Hb-Ra-Tel multi-region RNN model 
and log prob density of one illustrative block in the matrix. We chose the block corresponding to the 
projection from Ra to Hb early (red), stimulus period (grey) and late decision (blue) (p < 0.001%). 
There is no known direct projection from Ra to Hb, only those from Hb to Ra; however the model 
made a prediction that these feedback interactions exist and are strengthened (0 means, std dev 
indicates strength) during the task. E. CURBD analysis decomposed the three component 
subcurrents that comprise the observed activity in the Hb (top). PCA on the 3 subcurrents (left) 
showed that early in the experiment, activity occupies the Ra to Hb subspace and later in the 
experiment within-Hb and Tel to Hb subspaces get involved. Subcurrents over time, averaged over 
5 models based on different fish, also confirm this trend (in grey is the tail movement of one fish to 
indicate time scale). Findings in D and E collectively point to early changes driven by currents in 
the Ra-Hb subspace with no concommitant change in direction or magnitude of inter-area 
interactions. Later changes are driven by DI changes from Ra to Hb, suggesting a possible 
plasticity mechanism, and currents within Hb and from Tel to Hb. 
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Inter-area effects from CURBD is a powerful alternative to traditional p.o.v.
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Untangling inter-area communication using multi-region RNN model of zebrafish.  A. Three 
interconnected RNNs representing Hb (blue), Ra (red), and Tel (yellow) were intialized with random 
connectivity [as described in D4a, see also Fig 2] and trained to match Ca2+ activity imaged in the 
three regions while larval zebrafish swam away from a periodic stimulus (behavioral outputs not 
shown). B. Example units in Hb (blue), Ra (red), and Tel (yellow) modules shown along with the 
targets (grey). C. Activity of 4139 units over 400s in the three-region RNN projected into the largest 
3 principal components (PCs) (top), model captures 90% of the variance of data (bottom). Data 
(grey) and model outputs (red) D. DI matrx inferred from the Hb-Ra-Tel multi-region RNN model 
and log prob density of one illustrative block in the matrix. We chose the block corresponding to the 
projection from Ra to Hb early (red), stimulus period (grey) and late decision (blue) (p < 0.001%). 
There is no known direct projection from Ra to Hb, only those from Hb to Ra; however the model 
made a prediction that these feedback interactions exist and are strengthened (0 means, std dev 
indicates strength) during the task. E. CURBD analysis decomposed the three component 
subcurrents that comprise the observed activity in the Hb (top). PCA on the 3 subcurrents (left) 
showed that early in the experiment, activity occupies the Ra to Hb subspace and later in the 
experiment within-Hb and Tel to Hb subspaces get involved. Subcurrents over time, averaged over 
5 models based on different fish, also confirm this trend (in grey is the tail movement of one fish to 
indicate time scale). Findings in D and E collectively point to early changes driven by currents in 
the Ra-Hb subspace with no concommitant change in direction or magnitude of inter-area 
interactions. Later changes are driven by DI changes from Ra to Hb, suggesting a possible 
plasticity mechanism, and currents within Hb and from Tel to Hb. 
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2. Average population activity

3. Traditional state space view
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Figure 7. Preliminary Results: Smaller, highly sampled brains
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Figure 7. Preliminary Results: Smaller, highly sampled brains
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Untangling inter-area communication using multi-region RNN model of zebrafish.  A. Three 
interconnected RNNs representing Hb (blue), Ra (red), and Tel (yellow) were intialized with random 
connectivity [as described in D4a, see also Fig 2] and trained to match Ca2+ activity imaged in the 
three regions while larval zebrafish swam away from a periodic stimulus (behavioral outputs not 
shown). B. Example units in Hb (blue), Ra (red), and Tel (yellow) modules shown along with the 
targets (grey). C. Activity of 4139 units over 400s in the three-region RNN projected into the largest 
3 principal components (PCs) (top), model captures 90% of the variance of data (bottom). Data 
(grey) and model outputs (red) D. DI matrx inferred from the Hb-Ra-Tel multi-region RNN model 
and log prob density of one illustrative block in the matrix. We chose the block corresponding to the 
projection from Ra to Hb early (red), stimulus period (grey) and late decision (blue) (p < 0.001%). 
There is no known direct projection from Ra to Hb, only those from Hb to Ra; however the model 
made a prediction that these feedback interactions exist and are strengthened (0 means, std dev 
indicates strength) during the task. E. CURBD analysis decomposed the three component 
subcurrents that comprise the observed activity in the Hb (top). PCA on the 3 subcurrents (left) 
showed that early in the experiment, activity occupies the Ra to Hb subspace and later in the 
experiment within-Hb and Tel to Hb subspaces get involved. Subcurrents over time, averaged over 
5 models based on different fish, also confirm this trend (in grey is the tail movement of one fish to 
indicate time scale). Findings in D and E collectively point to early changes driven by currents in 
the Ra-Hb subspace with no concommitant change in direction or magnitude of inter-area 
interactions. Later changes are driven by DI changes from Ra to Hb, suggesting a possible 
plasticity mechanism, and currents within Hb and from Tel to Hb. 
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Input currents behave differently across multiple control v shocked fish
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Figure 7. Preliminary Results: Smaller, highly sampled brains
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Untangling inter-area communication using multi-region RNN model of zebrafish.  A. Three 
interconnected RNNs representing Hb (blue), Ra (red), and Tel (yellow) were intialized with random 
connectivity [as described in D4a, see also Fig 2] and trained to match Ca2+ activity imaged in the 
three regions while larval zebrafish swam away from a periodic stimulus (behavioral outputs not 
shown). B. Example units in Hb (blue), Ra (red), and Tel (yellow) modules shown along with the 
targets (grey). C. Activity of 4139 units over 400s in the three-region RNN projected into the largest 
3 principal components (PCs) (top), model captures 90% of the variance of data (bottom). Data 
(grey) and model outputs (red) D. DI matrx inferred from the Hb-Ra-Tel multi-region RNN model 
and log prob density of one illustrative block in the matrix. We chose the block corresponding to the 
projection from Ra to Hb early (red), stimulus period (grey) and late decision (blue) (p < 0.001%). 
There is no known direct projection from Ra to Hb, only those from Hb to Ra; however the model 
made a prediction that these feedback interactions exist and are strengthened (0 means, std dev 
indicates strength) during the task. E. CURBD analysis decomposed the three component 
subcurrents that comprise the observed activity in the Hb (top). PCA on the 3 subcurrents (left) 
showed that early in the experiment, activity occupies the Ra to Hb subspace and later in the 
experiment within-Hb and Tel to Hb subspaces get involved. Subcurrents over time, averaged over 
5 models based on different fish, also confirm this trend (in grey is the tail movement of one fish to 
indicate time scale). Findings in D and E collectively point to early changes driven by currents in 
the Ra-Hb subspace with no concommitant change in direction or magnitude of inter-area 
interactions. Later changes are driven by DI changes from Ra to Hb, suggesting a possible 
plasticity mechanism, and currents within Hb and from Tel to Hb. 
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Untangling inter-area communication using multi-region RNN model of zebrafish.  A. Three 
interconnected RNNs representing Hb (blue), Ra (red), and Tel (yellow) were intialized with random 
connectivity [as described in D4a, see also Fig 2] and trained to match Ca2+ activity imaged in the 
three regions while larval zebrafish swam away from a periodic stimulus (behavioral outputs not 
shown). B. Example units in Hb (blue), Ra (red), and Tel (yellow) modules shown along with the 
targets (grey). C. Activity of 4139 units over 400s in the three-region RNN projected into the largest 
3 principal components (PCs) (top), model captures 90% of the variance of data (bottom). Data 
(grey) and model outputs (red) D. DI matrx inferred from the Hb-Ra-Tel multi-region RNN model 
and log prob density of one illustrative block in the matrix. We chose the block corresponding to the 
projection from Ra to Hb early (red), stimulus period (grey) and late decision (blue) (p < 0.001%). 
There is no known direct projection from Ra to Hb, only those from Hb to Ra; however the model 
made a prediction that these feedback interactions exist and are strengthened (0 means, std dev 
indicates strength) during the task. E. CURBD analysis decomposed the three component 
subcurrents that comprise the observed activity in the Hb (top). PCA on the 3 subcurrents (left) 
showed that early in the experiment, activity occupies the Ra to Hb subspace and later in the 
experiment within-Hb and Tel to Hb subspaces get involved. Subcurrents over time, averaged over 
5 models based on different fish, also confirm this trend (in grey is the tail movement of one fish to 
indicate time scale). Findings in D and E collectively point to early changes driven by currents in 
the Ra-Hb subspace with no concommitant change in direction or magnitude of inter-area 
interactions. Later changes are driven by DI changes from Ra to Hb, suggesting a possible 
plasticity mechanism, and currents within Hb and from Tel to Hb. 
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Untangling inter-area communication using multi-region RNN model of zebrafish.  A. Three 
interconnected RNNs representing Hb (blue), Ra (red), and Tel (yellow) were intialized with random 
connectivity [as described in D4a, see also Fig 2] and trained to match Ca2+ activity imaged in the 
three regions while larval zebrafish swam away from a periodic stimulus (behavioral outputs not 
shown). B. Example units in Hb (blue), Ra (red), and Tel (yellow) modules shown along with the 
targets (grey). C. Activity of 4139 units over 400s in the three-region RNN projected into the largest 
3 principal components (PCs) (top), model captures 90% of the variance of data (bottom). Data 
(grey) and model outputs (red) D. DI matrx inferred from the Hb-Ra-Tel multi-region RNN model 
and log prob density of one illustrative block in the matrix. We chose the block corresponding to the 
projection from Ra to Hb early (red), stimulus period (grey) and late decision (blue) (p < 0.001%). 
There is no known direct projection from Ra to Hb, only those from Hb to Ra; however the model 
made a prediction that these feedback interactions exist and are strengthened (0 means, std dev 
indicates strength) during the task. E. CURBD analysis decomposed the three component 
subcurrents that comprise the observed activity in the Hb (top). PCA on the 3 subcurrents (left) 
showed that early in the experiment, activity occupies the Ra to Hb subspace and later in the 
experiment within-Hb and Tel to Hb subspaces get involved. Subcurrents over time, averaged over 
5 models based on different fish, also confirm this trend (in grey is the tail movement of one fish to 
indicate time scale). Findings in D and E collectively point to early changes driven by currents in 
the Ra-Hb subspace with no concommitant change in direction or magnitude of inter-area 
interactions. Later changes are driven by DI changes from Ra to Hb, suggesting a possible 
plasticity mechanism, and currents within Hb and from Tel to Hb. 
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Untangling inter-area communication using multi-region RNN model of zebrafish.  A. Three 
interconnected RNNs representing Hb (blue), Ra (red), and Tel (yellow) were intialized with random 
connectivity [as described in D4a, see also Fig 2] and trained to match Ca2+ activity imaged in the 
three regions while larval zebrafish swam away from a periodic stimulus (behavioral outputs not 
shown). B. Example units in Hb (blue), Ra (red), and Tel (yellow) modules shown along with the 
targets (grey). C. Activity of 4139 units over 400s in the three-region RNN projected into the largest 
3 principal components (PCs) (top), model captures 90% of the variance of data (bottom). Data 
(grey) and model outputs (red) D. DI matrx inferred from the Hb-Ra-Tel multi-region RNN model 
and log prob density of one illustrative block in the matrix. We chose the block corresponding to the 
projection from Ra to Hb early (red), stimulus period (grey) and late decision (blue) (p < 0.001%). 
There is no known direct projection from Ra to Hb, only those from Hb to Ra; however the model 
made a prediction that these feedback interactions exist and are strengthened (0 means, std dev 
indicates strength) during the task. E. CURBD analysis decomposed the three component 
subcurrents that comprise the observed activity in the Hb (top). PCA on the 3 subcurrents (left) 
showed that early in the experiment, activity occupies the Ra to Hb subspace and later in the 
experiment within-Hb and Tel to Hb subspaces get involved. Subcurrents over time, averaged over 
5 models based on different fish, also confirm this trend (in grey is the tail movement of one fish to 
indicate time scale). Findings in D and E collectively point to early changes driven by currents in 
the Ra-Hb subspace with no concommitant change in direction or magnitude of inter-area 
interactions. Later changes are driven by DI changes from Ra to Hb, suggesting a possible 
plasticity mechanism, and currents within Hb and from Tel to Hb. 
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Untangling inter-area communication using multi-region RNN model of zebrafish.  A. Three 
interconnected RNNs representing Hb (blue), Ra (red), and Tel (yellow) were intialized with random 
connectivity [as described in D4a, see also Fig 2] and trained to match Ca2+ activity imaged in the 
three regions while larval zebrafish swam away from a periodic stimulus (behavioral outputs not 
shown). B. Example units in Hb (blue), Ra (red), and Tel (yellow) modules shown along with the 
targets (grey). C. Activity of 4139 units over 400s in the three-region RNN projected into the largest 
3 principal components (PCs) (top), model captures 90% of the variance of data (bottom). Data 
(grey) and model outputs (red) D. DI matrx inferred from the Hb-Ra-Tel multi-region RNN model 
and log prob density of one illustrative block in the matrix. We chose the block corresponding to the 
projection from Ra to Hb early (red), stimulus period (grey) and late decision (blue) (p < 0.001%). 
There is no known direct projection from Ra to Hb, only those from Hb to Ra; however the model 
made a prediction that these feedback interactions exist and are strengthened (0 means, std dev 
indicates strength) during the task. E. CURBD analysis decomposed the three component 
subcurrents that comprise the observed activity in the Hb (top). PCA on the 3 subcurrents (left) 
showed that early in the experiment, activity occupies the Ra to Hb subspace and later in the 
experiment within-Hb and Tel to Hb subspaces get involved. Subcurrents over time, averaged over 
5 models based on different fish, also confirm this trend (in grey is the tail movement of one fish to 
indicate time scale). Findings in D and E collectively point to early changes driven by currents in 
the Ra-Hb subspace with no concommitant change in direction or magnitude of inter-area 
interactions. Later changes are driven by DI changes from Ra to Hb, suggesting a possible 
plasticity mechanism, and currents within Hb and from Tel to Hb. 

Andalman, … , Rajan, and Deisseroth, 2019 
Second zebrafish-based RNN manuscript in prep, watch bioRxiv

Shocked fish, averaged over 5 individuals
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Ques0on: What brain-wide mechanism mediates acKve- to passive coping in zebrafish?

Neural dynamics-level RNNs: Perich & Rajan, CoNEUR, 2020; Andalman, … , Rajan, and Deisseroth, Cell, 2019; Rajan, Harvey and Tank, Neuron, 2016  
Behavior-level RNNs: Yang, Cole, Rajan, COBEHA, 2019; Insanally,…,Rajan et al, eLife, 2019; Pinto, Rajan et al, Neuron, 2019  
In Prep & Review: Perich,…, Deisseroth & Rajan, BioRxiv, 2020; Young, …, Rajan & Rudebeck, BioRxiv, 2020; Benster, …,Rajan* & Deisseroth*, in preparation 

My approach is to build Computa0onal Models

1. constrained directly by experimental 
data, and 

2. analyze them using new methods and 
similar ones as those used on data 

3. infer circuit mechanisms inaccessible 
from measurements

 Neural Networks



1. Hb interac?ons ramp with persistent, 
inescapable adversity. Feedback 
interac?ons from Ra to Hb change.    
(2019 Cell paper) 

2. Roles of Ra and Tel projec?ons into Hb, 
some driven by fast changes to the 
current manifold and some by slower 
structural changes.                                
(what I told you today)

Ques0on: What brain-wide mechanism mediates acKve- to passive coping in zebrafish?

Rats

COMPUTATIONAL MODELS

Mice

Toy models

Larval 
zebrafish

Human

Brain-wide mechanisms media0ng ac0ve- to passive coping transi0on in zebrafish

Neural dynamics-level RNNs: Perich & Rajan, CoNEUR, 2020; Andalman, … , Rajan, and Deisseroth, Cell, 2019; Rajan, Harvey and Tank, Neuron, 2016  
Behavior-level RNNs: Yang, Cole, Rajan, COBEHA, 2019; Insanally,…,Rajan et al, eLife, 2019; Pinto, Rajan et al, Neuron, 2019  
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