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Behaviors involve evaluating whether actions are worth the effort

Hopelessness “Q Train” Nigel Van Wieck, 1990



Hopelessness is seen in many experimental settings involving persistent stress

Forced swim paradigm Behavioral response to adversity
e 2 60 s

Active coping Passive coping
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Are any circuit mechanisms conserved (+ where they diverge)?

Toy models

Larval

E% g\" 5\ zebrafish
COMPUTATIONAL MODELS
2%/
Rats Mice
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My approach is to build Neural Networks

1. constrained directly by experimental
data, and

2. analyze them using new methods and
similar ones as those used on data

3. infer circuit mechanisms inaccessible
from measurements

Neural dynamics-level RNNSs: Perich & Rajan, CONEUR, 2020; Andalman, ..., Rajan, and Deisseroth, Cell, 2019; Rajan, Harvey and Tank, Neuron, 2016
Behavior-level RNNs: Yang, Cole, Rajan, COBEHA, 2019; Insanally,...,Rajan et al, eLife, 2019; Pinto, Rajan et al, Neuron, 2019
In Prep & Review: Perich,..., Deisseroth & Rajan, BioRxiv, 2020; Young, ..., Rajan & Rudebeck, BioRxiv, 2020; Benster, ...,Rajan* & Deisseroth*, in preparation




Hopelessness is seen in many experimental settings involving persistent stress

Forced swim paradigm Behavioral response to adversity
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Mouse neurobiology in passive coping and similar states
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Extract mechanisms and principles from smaller brains with more access...

Larval Zebrafish Larval zebrafish neurobiology
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Andalman, ..., Rajan, and Deisseroth, Cell, 2019
MclLean and Fetcho, 2004; Hikosaka, 2010; Amo et al., 2010; Okamoto et al., 2012; Lovett-Baron et al., 2017 All zebrafish data courtesy Deisseroth lab, Stanford



... scale the approach to larger brains to look for similar or divergent mechanisms

Larval Zebrafish Homologies with mammalian system
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McLean and Fetcho, 2004; Hikosaka, 2010; Amo et al., 2010; Okamoto et al., 2012; Lovett-Baron et al., 2017  aA|| zebrafish data courtesy Deisseroth lab, Stanford



Tracking of behavior + neural activity brain-wide at cellular resolution

Shock times

/\ Inescapable stress

——- Baseline period Behavorial challenge period
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Andalman, ..., Rajan, and Deisseroth, 2019
All zebrafish data courtesy Deisseroth lab, Stanford



Main neural findings (population activity) from data

1. Steady increase in habenula (Hb) activation

Ventral habenula Dorsal habenula
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Andalman, ..., Rajan, and Deisseroth, 2019



Tracking of behavior + neural activity brain-wide at cellular resolution

Shock times
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Question: What brain-wide mechanism mediates active- to passive coping in zebrafish?

Toy models

Larval
E% g\O z\ zebrafish
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My approach is to build Neural Networks

. constrained directly by experimental

data, and

. analyze them using new methods and

similar ones as those used on data

. infer circuit mechanisms inaccessible

from measurements

Neural dynamics-level RNNSs: Perich & Rajan, CONEUR, 2020; Andalman, ..., Rajan, and Deisseroth, Cell, 2019; Rajan, Harvey and Tank, Neuron, 2016
Behavior-level RNNs: Yang, Cole, Rajan, COBEHA, 2019; Insanally,...,Rajan et al, eLife, 2019; Pinto, Rajan et al, Neuron, 2019
In Prep & Review: Perich,..., Deisseroth & Rajan, BioRxiv, 2020; Young, ..., Rajan & Rudebeck, BioRxiv, 2020; Benster, ...,Rajan* & Deisseroth*, in preparation




1. From single region- to multi-region Recurrent Neural Networks (RNNs)

SINGLE MODULE RNN MULTI-REGION RNN
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Multi-region RNNs capture both within & inter-area interactions

SINGLE MODULE RNN MULTI-REGION RNN
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2. Train activity of model units to match neural data directly

Learning algorithm
Recursive least squares (RLS)

RNN A

activity of unit /, z;(t)
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|
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Inter-area
projections

Neural dynamics-level RNNSs: Perich & Rajan, CONEUR, 2020; Andalman, ..., Rajan, and Deisseroth, Cell, 2019; Rajan, Harvey and Tank, Neuron, 2016
Behavior-level RNNs: Yang, Cole, Rajan, COBEHA, 2019; Insanally,...,Rajan et al, eLife, 2019; Pinto, Rajan et al, Neuron, 2019

In Prep & Review: Perich,..., Deisseroth & Rajan, BioRxiv, 2020; Young, ..., Rajan & Rudebeck, BioRxiv, 2020; Benster, ...,Rajan* & Deisseroth*, in preparation




What we gain from multi-region RNNs constrained directly by data

RNN A

Quantities inaccessible from measurements alone!

RNN C

1. Multi-region RNN model that produces
realistic neural dynamics

Inter-area \\

projections
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2. Inference of consistent brain-wide
“directed interactions” j
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Neural dynamics-level RNNSs: Perich & Rajan, CONEUR, 2020; Andalman, ..., Rajan, and Deisseroth, Cell, 2019; Rajan, Harvey and Tank, Neuron, 2016

Behavior-level RNNs: Yang, Cole, Rajan, COBEHA, 2019; Insanally,...,Rajan et al, eLife, 2019; Pinto, Rajan et al, Neuron, 2019
In Prep & Review: Perich,..., Deisseroth & Rajan, BioRxiv, 2020; Young, ..., Rajan & Rudebeck, BioRxiv, 2020; Benster, ...,Rajan* & Deisseroth*, in preparation




Current-Based Decomposition of Population Activity (CURBD)

Multi-region Networks
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Question: Is there a “cortex” in the zebrafish responsible for shutting down movement?

1. Steady increase in habenula (Hb) activation
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Three-region RNN model of the neural dynamics in the larval zebrafish

NEURAL ACTIVITY

STATE SPACE ANALYSIS

MULTI-REGION RNN OF LARVAL ZEBRAFISH
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Looking at currents from the same or different areas using CURBD

MULTI-REGION RNN OF LARVAL ZEBRAFISH

Area A
(Hb-like)

4

Area B
(Tel-like)

Area C
(Ra-like)

Post, /

47 L
105 y to Hb
:.:.. v ..ll..
:i'..:':'. RE
"
Pre, j E

>Directed Interactions
®

>Activity similar to data

Dot product

Currents due to
recurrent
interactions



urrents due to recurrent inputs into the Habenula

MULTI-REGION RNN OF LARVAL ZEBRAFISH DEMIXED SOURCE CURRENTS INTO Hb
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Currents due to recurrent inputs into the Habenula add up to the measured output

MULTI-REGION RNN OF LARVAL ZEBRAFISH 1. Activity in Habenula
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State space view of how the three source currents evolve...

MULTI-REGION RNN OF LARVAL ZEBRAFISH DEMIXED SOURCE CURRENTS INTO Hb
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... reveals surprising inter-area effects, e.g., timing of inter-area currents

MULTI-REGION RNN OF LARVAL ZEBRAFISH DEMIXED SOURCE CURRENTS INTO Hb
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Inter-area effects from CURBD is a powerful alternative to traditional p.o.v.
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Input currents behave differently in control v shocked fish

Control fish, example
DEMIXED SOURCE CURRENTS INTO Hb
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Input currents behave differently across multiple control v shocked fish

Control fish, averaged over 5 individuals
DEMIXED SOURCE CURRENTS INTO Hb
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Slow passivity may be driven via DI changes; early changes in active coping, currents driven

DI changes during the experiment
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Question: What brain-wide mechanism mediates active- to passive coping in zebrafish?

Toy models
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My approach is to build Neural Networks

. constrained directly by experimental

data, and

. analyze them using new methods and

similar ones as those used on data

. infer circuit mechanisms inaccessible

from measurements

Neural dynamics-level RNNSs: Perich & Rajan, CONEUR, 2020; Andalman, ..., Rajan, and Deisseroth, Cell, 2019; Rajan, Harvey and Tank, Neuron, 2016
Behavior-level RNNs: Yang, Cole, Rajan, COBEHA, 2019; Insanally,...,Rajan et al, eLife, 2019; Pinto, Rajan et al, Neuron, 2019
In Prep & Review: Perich,..., Deisseroth & Rajan, BioRxiv, 2020; Young, ..., Rajan & Rudebeck, BioRxiv, 2020; Benster, ...,Rajan* & Deisseroth*, in preparation




Brain-wide mechanisms mediating active- to passive coping transition in zebrafish

Toy models

Our results from multi-region RNNs and CURBD:

1. Hb interactions ramp with persistent,

Larval
zebrafish inescapable adversity. Feedback
interactions from Ra to Hb change.
(2019 Cell paper)

2. Roles of Ra and Tel projections into Hb,
some driven by fast changes to the

_ current manifold and some by slower

Mice structural changes.

(what | told you today)

Neural dynamics-level RNNSs: Perich & Rajan, CONEUR, 2020; Andalman, ..., Rajan, and Deisseroth, Cell, 2019; Rajan, Harvey and Tank, Neuron, 2016
Behavior-level RNNs: Yang, Cole, Rajan, COBEHA, 2019; Insanally,...,Rajan et al, eLife, 2019; Pinto, Rajan et al, Neuron, 2019
In Prep & Review: Perich,..., Deisseroth & Rajan, BioRxiv, 2020; Young, ..., Rajan & Rudebeck, BioRxiv, 2020; Benster, ...,Rajan* & Deisseroth*, in preparation




Are any circuit mechanisms conserved (+ where they diverge)?

Toy models

Larval
e zebrafish
COMPUTATIONAL MODELS /t
Rats Mice

~ar

% -

Advantages of computational models

1. Multi-region RNN models generating neural
dynamics consistent with data from active-to
passive coping experiments

2. Inference of consistent Directed Interaction
matrices, which
- reflect both within and inter-area
connectivity, and
- correlate with behavioral state change

3. CURBD inferred currents suggest distinct
time scales: early and slower effects.

Alternative to traditional functional connectivity

Neural dynamics-level RNNs: Perich & Rajan, CONEUR, 2020; Andalman, ...,

Rajan, and Deisseroth, Cell, 2019; Rajan, Harvey and Tank, Neuron, 2016

Behavior-level RNNs: Yang, Cole, Rajan, COBEHA, 2019; Insanally,...,Rajan et al, eLife, 2019; Pinto, Rajan et al, Neuron, 2019

In Prep & Review: Perich,..., Deisseroth & Rajan, BioRxiv, 2020; Young, ..., Rajan & Rudebeck, BioRxiv, 2020; Benster, ...,Rajan* & Deisseroth*, in preparation
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