

DBS for Treatment-Resistant Depression: a (5 year) Progress Report

Helen Mayberg MD

Center for Advanced Circuit Therapeutics Icahn School of Medicine at Mount Sinai New York

October 15, 2019

Disclosures

Off-Label Use of Devices: Donated DBS electrodes/pulse generators

1. Medtronic Inc. (Toronto, Emory, MSSM)

2. Abbott Labs/St. Jude Medical, Inc (Emory)

Patent: US2005/0033379A1 (Andres Lozano, co-inventor)

issued March 2008, Abbott Labs, assignee

Consultant: Abbott Labs

NARSAD Distinguished Investigator Award 2002 BBRF Webinar 2014 Today: 5 year update

Emory Depression DBS Team

Clinical **Implant Programming**

Neurosurgery

R Gross

Psychiatry

P Holtzheimer S Garlow P Riva-Posse A Crowell

R Hershenberg

Patient Coordination

L Denison

Imaging

DBS Biometrics and Mechanisms

Electrophysiology

K Choi

J Rajendra

A Waters

O Smart V Tiruvadi A Veerakumar

M Sendi S Alagapan

Modeling, **Behavioral Biometrics**

C McIntyre Case Western ENTICe modeling

B Howell modeling

D Obatusin Comp Sci

T Denison Oxford Engineering

S Nemati BMI ML/AI

S Hamati Computer Sci

C Inman. Cog NS

M Kelley **Biostatistics**

NIMH 1R01MH102238, 1R01MH106173, BRAIN UH3NS103550 FDA IDE: G060028, G130107 (PI: HM)

Clinicaltrials.gov ID#: NCT00367003, NCT01984710

Axiom 2019

neuropsychiatric disorders are circuitopathies

Movement Disorders

Obsessive-Compulsive Disorders (OCD, TS)

Mood Disorders (MDD, PTSD, anxiety)

Seizures, Memory

Addictive Disorders

Chronic Pain

Focal Modulation of Disease Circuits

general approach (invasive/non-invasive)

- WHY? (define need)
- WHERE to stimulate (critical node)
- WHAT should happen (target engagement, endpoint)
- WHO to stimulate (patient selection biomarker)
- HOW to stimulate (intermittent, continuous, closed loop)

Goal - Match Target to disease, symptom, patient

- Devise personalize algorithm to optimize response

DBS 101: Basic Procedure

Target and modulate a neural circuit

Equipment

IPG: implantable pulse generator

MRI/CT Guided targeting

Stereotaxic Implantation +/- awake, recording, testing

DBS system in situ disease specified location chronic continuous stim

DBS for Depression: Motivation 2001 Why?

Mood
Interest
Activities
Weight
Sleep
Activity
Energy
Concentration
Guilt
Suicide

Treatments are available, but not always effective

- 10% become treatment resistant over time
- few options if fail ECT

Rationale for Neuromodulation as a Potential Strategy

- advances in functional neurosurgery and imaging (essential)
- experience in Parkinson's disease (naïve but a start)

DBS for TRD

What are we trying to treat?

"A gnawing agony; a painful self-loathing that consumes all your energy and attention..."

nearly <u>immobilized</u> and in a <u>trance</u> of supreme <u>discomfort</u>...

William Styron. Darkness Visible 1991 (2004) "Can't get away from inside yourself..."

What might recovery look like? can move; be without pain?
Return of agency?

Proof-of-Principle Pilot Study: 6 TRD patients

6-month open-label DBS, 1st pt 2003, published 2005

Neuron, Vol. 45, 1-10, March 3, 2005,

Deep Brain Stimulation for Treatment-Resistant Depression

Helen S. Mayberg,^{1,2,*} Andres M. Lozano,^{3,*} Valerie Voon,4 Heather E. McNeely,5 David Seminowicz,6 Clement Hamani,3 Jason M. Schwalb,3 and Sidney H. Kennedy4

Rationale

Goal

psychic pain neg mood

depression recovery

Hypothesis: blocking BA25 will also change regions connected to it

Simple Minded Approach unambiguous, go-no-go outcomes TRD pts >4vr CE, >4 Rx, fail ECT, Ham>20

Method

Target

SCC WM

130Hz 90us 4V

Outcome HAM-17 (Classic Dep Rating Scale)

mechanism **CBF PFT**

Baseline Ham17=27+2

6m Change Ham17=7.8+3

Phase 2: Extension, Replication, Maintenance Expansion to other sites 2008-2012

6m open label, 6m continuation

months after implant

Lozano Biol Psych 2008

1 mo placebo single blind, 18m open

Holtzheimer et al. Arch Gen Psych 2012

Toronto n=20 Long Term f/u: 3-6 yrs

Kennedy Am J Psych 2011

Data presented
Jan 2014 BBRF
Webinar
(very optimistic)
New science underway

In Parallel: BROADEN Multi-center RCT

SCC DBS for TRD 2008-2014, published 2017

Part 1: Randomized blinded 6m; open 6m

Part 2: Long Term Follow-up, 2y active DBS

15 Centers: 200 planned/90 implanted/4 NR expl<6m Study halted 2014; data on half of intended sample Age ≈ 50 (47/90 female)

MDD (5 episodes lifetime)

Current episode duration ≈ 9-11 years

Past treatments: 20 lifetime; 8 adequate Tx

previous ECT=80%, hosp=80%

Progressive change over time
Contact changes ∝ improvement
No DTI to verify details
role of psychotherapy after 1 year?
Study end: min 2y; range 2-6y, battery Q2y
At study end: Explant or RC offered
Brio #44; Explant #37; Deaths #4; other #5

Sponsor: St Jude Medical

Holtzheimer et al. Lancet Psychiatry Oct 2017

Other Centers, Other Targets, Other Logic Open label ≠ RCT

All Targets: ≈ 320 total pts implanted

SCC: 162 pts (+ >50 unpublished)

VC/VS: 71 pts

MFB: > 33 pts (ongoing RCT)

What are we missing?

Binary Public Response to 'Failed' RCTs

impact on patients and scientists

First Question: Is it worth pursuing?

Emory Strategy: Follow the Data sustainability; discontinuation, relapse/recapture

A Crowell

Blinded Discontinuation

Holtzheimer et al Arch Gen Psych 2012

Response and Remission Rates

Naturalistic discontinuation (battery failure)

A Crowell et al. Am J Psychiatry online Oct 4

How to Reconcile?

focus on responder / non-responder differences

- WHO: patient selection, TRD subtyping.
- 2. WHERE: target selection, precision targeting
- 3. WHAT: Readouts of recovery, timecourse
- 4. HOW: parameter adjustments what/when to maintain Closed loop, on-demand, set-and-forget or fine-tune

Needed at level of individual patients Start where you can test a null hypothesis

Who: TRD Subtyping TRD patients are NOT homogeneous

BRAIN & BEHAVIOR

Awarding NARSAD Grant

Brain biomarker of eligibility? regional abnormalities differ by Type/number Past Tx failures

Where: Are we in the right place?

surgical targeting, contact selection, connections

Location of <u>Active</u> Contact R vs NR

Atlanta

Riva Posse and Choi Biol Psych 2015

First Clue: Local and Remote CBF PET changes 2005

Responders

Non-Responders

Consider full network not just the target

diffusion MRI

Characterize Common Response 'Circuit' necessary and sufficient network not a single region

Voltage Field Model
Volume of Tissue Activated

Butson & McIntyre Brain Stim 2008

TAM as seed for DTI
Using specific DBS lead,
WM tracts/location
Indiv stim parameters

C McIntyre (Case)

K Choi

P Riva-Posse

Probablistic Tractography

6 mo Resp N=6

ACC aTh vst

Modeled Voxels common to all 6m R same map in all 2y R

NR to R w/ contact change n=5

impact missing mF and thalamus

Riva Posse and Choi et al Biol Psych 2015

PutativeTemplate For targeting

Test Benefit of Multipath Targeting Method

'Connectomics' surgery as concept

Target Blue-Print

d-DTI in single Ss

Model of Planned VTA
Stim at predefined location

- 1. Awake testing in OR
- 2. Chronic DBS at DTI target w/o contact change over 6m
- 3. single current increase

response trajectory

Further Impact of Target Optimization

discovery that recovery is not linear

Rate is higher; AND timing is different

Cohort 1

Anatomical target; derived DTI template Arch Gen Psych 2012

Cohort 2

prospective testing DTI Template

Molecular Psych 2017

Cohort 3

Real time DTI UH3 in progress 2018

Models to Account for Observed Trajectory

clues to mechanisms; critical for revised study design

First DBS

Network Reset/Switch acute, rapid

What ever you just did, I just suddenly shifted ...

Network Plasticity delayed, progressive

...I didn't realize how much work I would need to do myself..

Chronic DBS

Zarate 2006

Early reset \rightarrow remodeling \rightarrow resilience with time

Need differential metrics/temporal sampling for different stages?

Evidence of Differential early/late effects PET CBF changes

Jungho Cha

PET \triangle Early

Network (Cg25, mF, Ins)

Carryover from stim in OR?

PET △ Late
Non-network (Lat PF, PCC + plns)
Change only with active DBS

First Toronto Findings: same change pattern 3 and 6 months of chronic DBS

Need strategy that captures acute changes and progression over time with higher temporal resolution

Why does this matter?

(Trial endpoints, treatment adjustments)

NOW: Use the Same DBS settings for all Phases

BUT: Variable response rate in individuals

NEED: longitudinal readouts of brain + behavior— relapse vs life stress

HYPOTHESIS: different phases show different effects.

individualize to optimize treatment delivery.

Tracking Chronology of Stimulation Effects

Gen-2 devices: causal models, candidate control signals

CBF PET fixed time points

Activa PC+S ongoing SCC LFP

EGI-hdEEG intermittent cortical

Pt specific biophysical Models

self-reported mood, ratings

movement actigraphy, GPS

autonomic SCR, Heart Rate

emotion expression video, face mm, voice, words

Revisit first exposure to DBS in the OR

Monitor patient's worst symptoms

```
pain paralyzed

gnawing vortex

disconnected sticky buried

dead void quicksand
unrelenting
```

what, when, where change happens? Don't want to miss potential reset.

Characterizing the 'Depression Switch' pt self report: first evidence of target engagement?

P Riva-Posse

DTI, randomized stim 130Hz 90us 6mA 9 patient: R/L leads 8 contacts, 108 trials

Type 1 interoceptive change

I feel lighter

I feel less heavy

I can breathe

the tension is gone

the pain is gone

Type 2 exteroceptive change

I feel more connected

I feel more optimistic

I could walk my dog

I could wash my hair

can imagine seeing friends

30/72 active; 4/36 sham; 17L, 3R

ACC vmF

Type 1: Cingulum Bundle

9/72 active (all L); 0 sham

Type 2: CB + Forceps Minor

A Waters

Cortical Readout of Optimal Target

Confirmation in lab prior to starting DBS

2Hz ERP **ON** Target based on DTI Grand Average; n=4, 15 sessions

Single Subject ON vs OFF Target Anatomical specificity

Next step: OR verification

LFP Readout of Depression Switch

repeated bilat DBS at target in OR

SCC Weekly Readout

B Voytek

first step towards closed loop DBS delivery

PC+S Chronic recording

DBS off, weekly lab assessment

Slope and Depression Severity regardless of Tlme

Single Subject Weekly Slope vs Dep Score

Slope changed 1 week before Clinical Relapse Putative predictive signal to trigger adjustment

Readouts without Brain or Self-Report? quantify what seems obvious

DBS 35 preop

1 year of DBS

They look different*
They move more
They do things
They feel better

Distinguish stalled response, impending relapse, transient life stressor

Rating Scales intuitively less reliable with time

Tuning DBS based on Facial Expression

Distinguish depressed vs stressed vs well

A Crowell

S Harati

video interview n=9; weekly x 6m 2min clip, spontaneous speech

3 Videos @ patient Psychiatrist selected Sick Well Rough What does the face say?

Use to guide dose adjustments

Behavioral Tracking6 mo Outcome Predictions

A Crowell

What biomarker best tracks response?

Voice print

Output

O

Face print

self-report Rating scales

Can you predict when a Patient will Recover?

Face-Voice 8-11 wks Predicts 6m Outcome Min added value of Rating Scale

Hypothesis:

SCC LFP might better track such behavioral readouts than severity scores

K Choi

A Waters

D Obatusin

Q-Lab at C-ACT quantitative biometrics

SS

S Scherrer D putrino Rehab

M Phillips Designer

Hi Imaging Biophysical models

Voice print

Steerable Network Control

Facial Expression

brain readouts

Activity

contour maps

D Obatusin F Afzal Mt Sinai

MSSM Experiments Winter 2019 start

F Jamshed Oxford

Toth and...Denison Oxford 2019

Face + Voice + Time + ratings Inputs to model

Worrell IEEE J Transl Eng Health Med. 2018

B Kopell. M Figee. S Oneill

J Gowatsky

L Pagan

Neurotechnology and Treatment

Evolution not Revolution

Recovery takes more than a Stimulator necessary but not sufficient

Broken

Reset

Remodel

Rehab/Retrain

Relearn

Plasticity

- WANT: meaningful symptom relief, sustained, durable (relapse prevention)
- NEED: Rehabilitation strategies that maximize recovery (resilience)
- LEARN: distress ≠ depressed. (Define readouts that can tell the difference)

Bottom Line: How would you live your life if relapse was the exception and not the rule?

What do Patients Think?

they get it, but it takes time

I have a lot of learning to do.
I sometimes feel quite lost.
But it is nothing like before.
I'm just trying to figure out who I am and where I'm headed.
I'm somewhat unhappy,
and I'm definitely overwhelmed,
but I'm not sick.

Emory #17 (3/10/12)

For More Information

Nash Family Center for Advanced Circuit Therapeutics https://icahn.mssm.edu/research/advanced-circuit-therapeutics

Helen.mayberg@mssm.edu

