Childhood Onset Schizophrenia: Rare but worth studying

Brain & Behavior Research Foundation Webinar, September 9, 2013

Judith L. Rapoport MD NIMH, Bethesda MD

Childhood Onset Schizophrenia

- Defined as Onset before 13
- Very rare but over diagnosed in children
- Observation off medication important for diagnosis
- NIMH study has been ongoing since 1990
- Early onset illness has been helpful in understanding genetics and biology of many disorders (e.g. breast cancer, Alzheimers) throughout medicine

Childhood-Onset Schizophrenia: Discharge Diagnosis after 228 In-Patient Admissions*

High Rates of Pre- Psychotic Neurodevelopmental Impairment for Childhood Onset Schizophrenia Probands (January, 2013)

Genetic/familial risk? Not a high rate of sibling neurodevelopmental impairment Model: our patients have some higher rare genetic risk and lack protective factors.

Previous clinical studies

Risk: no strong indication of:

- Obstetrical risk (obstetrical record comparison vs. siblings)
- Early puberty
- Paternal age
- Season of birth
- Trauma
- Sibling neurodevelopmental impairment

Continuity with AOS

- Unmodified DSM IV Diagnosis
- Neuropsychological Profile
- Skin conductance
- SPEM (eye movements)
- Anatomic brain MRI (increased ventricular and decreased hippocampal volumes)

Treatment

- Double blind superiority of clozapine vs haloperidol
- Double blind superiority of clozapine vs olanzapine
- Safety study of TDCS

Ongoing Clinical Studies

TDCS

(transcranial direct current stimulation)

- Double blind, (sham control), parallel design
- New very small brain stimulator (can be carried in pocket)
- Testing for treatment of cognitive deficits and for psychotic symptoms

Intranasal Oxytocin

 Double blind study with measures of social interaction

Has been shown to increase social interaction in autism

 Pre-post Imaging with resting fMRI, MEG and emotional task

Brain Imaging Studies of COS

Healthy Children

- We first establish the first "norms" for MRI measures of human brain development
- Studied children prospectively throughout childhood and adolescence

Childhood Schizophrenia Patients

- Childhood onset patients lost brain tissue during adolescence
- Their <u>healthy</u> siblings showed some early brain abnormalities that improved with age!

Time Course of Critical Events in the Determination of Human Brain Morphometry

COS Brain Development Age 12-16

COS n=12 Vs Controls n=12; 3 scans each Age, sex and scan interval matched.

Thompson et al. PNAS 2001

Normal Brain Development Age 4-22

n=13; 51 scans

Gogtay et al. PNAS
2004
COS HAS
EXAGGERATION OF
NORMAL PATTERN
PF CORTICAL
DEVELOPMENT

Relative Cortical Thinning Becomes Circumscribed with Age for COS Probands

Previous General Pattern Holds with Extended Sample (COS N= 85, 177scans; NV N= 86,185 scans) and later version of MNI pipeline (CLASP)

Corrected for MCT Age 16 18 20 22 12 14 Uncorrected

Relative cortical GM thinning in Childhood Onset Schizophrenia (COS) becomes more circumscibed across age 8-24:

COS (n=104, 222 scans) Vs Controls (n=104, 233 scans)]

Cortical Brain Development in Non-Psychotic Full Sibs of COS Probands

A) Normalizing in healthy sibs (n=52; 113scans) v Controls (n= 52; 108 scans) (Gogtay et al Arch Gen Psych 2007)

B.BReplication with <u>non-overlapping</u> healthy sibs (sib n= 38; 47 scans) vs. (Controls n=80; 182 scans) Mattai et al 2011) Gogtay, 2009

10 17

Relative GM thinning in Healthy COS Siblings (combined sample)

Healthy Siblings (n=91, 185 scans) Vs Controls (n=92, 193 scans)

HIPPOCAMPAL VOLUME: FIXED, STATE RELATED:

Total Hippocampus

Johnson et al 2013

Left Right

Volume (cmm)

NV v COS p=0.001 NV v Sib p=0.515 Sib v COS p=0.006

Volume Differenc

Volume Differences

NV v COS p=0.001 NV v Sib p=0.414 Sib v COS p=0.004

NV v COS p=0.001

NV v Sib p=0.818

Sib v COS p=0.001

MATTAI ET AL 2011

No significant shape differences between any trajecto

Childhood onset schizophrenia: Genetic studies

- Copy Number Variants seem to increase risk for many neurodevelopmental disorders
- We compared COS with their siblings and with controls

- "Growing Brains in a Dish"
- Skin biopsies(fibroblasts) being used to make embryonic stem cells for each patient
- These stem cells then produce lines of neuronal cells for study

COS: Genetic Studies-Copy Number Variants

- Large number of CNVs reported for neuro-developmental disorders (schizophrenia, autism, Intellectual Disability, and/or epilepsy)
- Large control populations available for each disorder
- Sufficient COS sample size to also compare rates with healthy full siblings

Neurodevelopmental Risk associated CNVs (autism, ID, epilepsy and/or schizophrenia) in 11.9% of COS probands

NSBID	Chr. Band	Start (hg18)	Stop (hg18)	Size (kb)	Туре	Duplicated or Deleted genes	Inheritance	Disease	Reported in 2008
1358^	2p25.3	1,591,064	1,836,375	245	Dup	2	Mother	SCZ	Yes
534^	2p25.3	1,720,133	1,827,317	107	Dup	2	Unknown	SCZ	Yes
581	2p16.3	50,025,162	50,136,989	112	Del	2	Unknown	SCZ, ASD	Yes
534^	8q11.2	53,550,992	54,043,684	493	Dup	3	Unknown	ID	No
885	10q22.3	81,415,378	81,588,866	173	Del	5	de novo	ID	No
448	15q11.2	18,818,086	20,203,694	1,386	Del	24	Unknown	SCZ, Epi	No
1358^	15q11.2	20,203,694	20,778,963	575	Del	13	Mother	SCZ, Epi	No
1546^	15q13.3	30,238,780	30,620,951	382	Del	26	de novo	SCZ, Epi	No
498	15q13.3	30,238,780	30,713,368	475	Del	30	Mother	SCZ, Epi	No
481	16p12.1	21,498,074	21,946,841	449	Del	7	Father	ID	No
676^	16p11.2	29,502,984	30,107,306	604	Dup	15	Father	SCZ, ASD	Yes
2011	16p11.2	29,782,436	30,227,808	445	Dup	34	Father	SCZ, ASD	Yes
1546^	17q21.3	41,321,621	41,706,070	384	Dup	4	Father	ID	No
1275	22q11.2	17,092,563	20,077,678	2,985	Del	49	de novo	SCZ, ASD, ID	No 🚤
1220	22q11.2	17,224,632	19,842,333	2,618	Del	48	de novo	SCZ, ASD, ID	No <
537	22q11.2	17,257,787	19,855,248	2,597	Del	46	Unknown	SCZ, ASD, ID	No
1804	22q11.2	17,257,787	19,963,350	2,706	Del	47	de novo	SCZ, ASD, ID	No <
3169	22q11.2	17,269,794	20,128,199	2,858	Del	55	de novo	SCZ, ASD, ID	No <
676^	22q13.3	47,903,228	49,557,485	1,654	Dup	4	de novo	ASD	No

Note: ^Individuals with 2 events; CNVs in yellow have not been reported for schizophrenia in large case control studies.

Comparisons of COS proband-Healthy sibling Pairs (n=69)

Rates of selected Neurodevelopmental disorder-related CNVs in Childhood onset schizophrenia (COS) vs Adult onset schizophrenia (AOS)

^{*} Samples in Guha et al. (in press)

^{**} Samples in Glessner et al. (2010)

Modeling schizophrenia using human induced pleuripotent stem cells

Control patient

ontro HFs Contro hipscs Control hiPSC neurons

Gene expression

Child Psychiatry Branch at NIMH

