New Technologies: Depression
Tarique Perera, M.D., furthers studies on Transcranial Magnetic Stimulation (TMS), pioneered by Mark S. George, M.D. Dr. George estimates that three people a day are recovering from depression because of TMS.

Diagnostic Tools / Early Intervention: Depression
Andrea Danese, M.D., Ph.D., and colleagues discover that people mistreated in childhood are twice as likely to suffer depression and respond poorly to treatment, leading the way toward diagnostic and early intervention possibilities for those at risk.

Basic Research: Schizophrenia and Bipolar
Jonathan Mill, Ph.D., and colleagues demonstrate that potentially reversible epigenetic changes play a key role in mental illness in the first study to systematically investigate genome-wide epigenetic differences in a large number of psychosis discordant twin-pairs.

Next Generation Therapies: Schizophrenia
Aaron T. Beck, M.D., and colleagues demonstrate that cognitive behavioral therapy (CBT) can successfully treat the ‘negative’ symptoms of schizophrenia, such as emotional flatness, listlessness and isolation.

Diagnostic Tools / Early Intervention: Depression
Joan L. Luby, M.D., and colleagues successfully tested a novel form of psychotherapy called Parent Child Interaction Therapy-Emotion Development (PCIT-ED) to help preschoolers with symptoms of depression function better and learn to regulate their emotions.

Basic Research: Anxiety, PTSD
Michael Fanselow, Ph.D., and Stephanie Bissiere, Ph.D., were part of a team that uncovered a previously unexplored target for anti-anxiety treatments—gap junctions in the brain, which, if blocked with drugs, could prevent fear memories from forming.

Basic Research: OCD
Stephanie Dulawa, Ph.D., and colleagues isolated a single neurotransmitter receptor in a specific brain region responsible for OCD-like symptoms, offering a new avenue for developing better treatments in a disease where there is only one successful therapy to date.

Basic Research: Autism
Schahram Akbarian, M.D., Ph.D., and colleagues were the first to map epigenetic changes in neurons from the brains of individuals with autism, providing empirical evidence that epigenetic alterations—changes in gene expression caused by mechanisms other than changes in the underlying DNA sequence—may play an important role in the disease.

Visit our website to read more: bbrfoundation.org