

Brain & Behavior Foundation Meet the Scientist Webinar April 11th, 2023

Changes in Infant Emotion Regulation Following Maternal Treatment for Postpartum Depression

Ryan J Van Lieshout, MD, PhD, FRCP(C)

Associate Professor, Department of Psychiatry Canada Research Chair in Perinatal Mental Health Albert Einstein/Irving Zucker Chair in Neuroscience McMaster University

Overview

- Postpartum Depression: Effects on Infant ER
- BBRF Study 1: Infant ER
- BBRF Study 2: Mother-Infant Dyad
- Implications & Next Steps

Postpartum Depression

- 8% of individuals experience perinatal MDE¹
- Up to 20-30% of mothers/BPs will experience † symptoms²
- Associated with costs of \$100K (USD) over the lifespan³
 - Up to 2/3rd of these costs are due to offspring difficulties

Impact on Offspring

- Increased risk of:⁴
 - Cognitive
 - Emotional
 - Behavioral problems in offspring
- Childhood: †5x in behavioral problems
- Adolescence/Adulthood: †4x in major depressive disorder⁶

Infant Emotion Regulation

- Emotion Regulation: the ability to modify emotions in the service of future goals
 - Can be reliably measured in pre-verbal infants
 - Assessed using a combination of parent-report, observational, and physiological measures⁷
 - It is poorer in the infants of mothers with PPD^{8,9}

Long-Term Effects of Poor ER

- Early problems with ER are associated with 3x \risk of:
 - School failure
 - Substance dependence
 - Income below the poverty line 10
- Involved in the development of almost all forms of psychopathology 11

How Does PPD Affect Infant ER?

- Mothers/infants form a dyadic regulatory system 12
 - Infants signal mothers and mothers provide regulatory support
- PPD is associated with:
 - Increased anxiety in response to infant distress ¹³
 - Maladaptive reactions to infant distress 14
 - Fewer caregiving behaviors 15
- It is not known if or how these maternal behaviors are affected by treating mothers

Maternal PPD Treatment

- Relatively few studies of the impact of PPD treatment on infant offspring
 - Some suggest it helps 16,17 while others do not 18,19
 - Just two have examined infant ER
 - Used maternal report alone 20,21

Objectives

- 1. To determine if treating maternal PPD can improve infant ER
- 2. To examine the impact of maternal CBT for PPD on the mother-infant (dyadic) regulation system

Sample

- PPD Group 40 mothers with:
 - Current major depressive disorder
 - Infants <12 months-old
- Healthy Control Group 40 mothers:
 - Free of mental health problems
 - Matched on:
 - Infant Age
 - Infant Sex
 - Family SES

Intervention

- 9-week group CBT for PPD intervention
 - Nine weekly two-hour sessions
 - Delivered by a perinatal psychiatrist and social worker or nurse
 - Hour 1: Core CBT skills (cognitive restructuring, behavioral activation)
 - Hour 2: Discussion topic (supports, transitions, sleep, etc.)

Study Design

Visit 2 Visit 1 **Pre-Treatment Post-CBT Group CBT Treatment Baseline Post-Baseline** 9-weeks

Measures

• Infant:

- Emotion Regulation
 - Parent-Report: Infant temperament (IBQ-R)
 - Observational: Face-to-Face Stillface Task
 - Physiology: EEG, ECG: At rest and during FFSF

• Maternal:

- Demographic characteristics
- Clinical measures (EPDS, GAD-7, NEO-FFI)
- Resting state and FFSF EEG, ECG

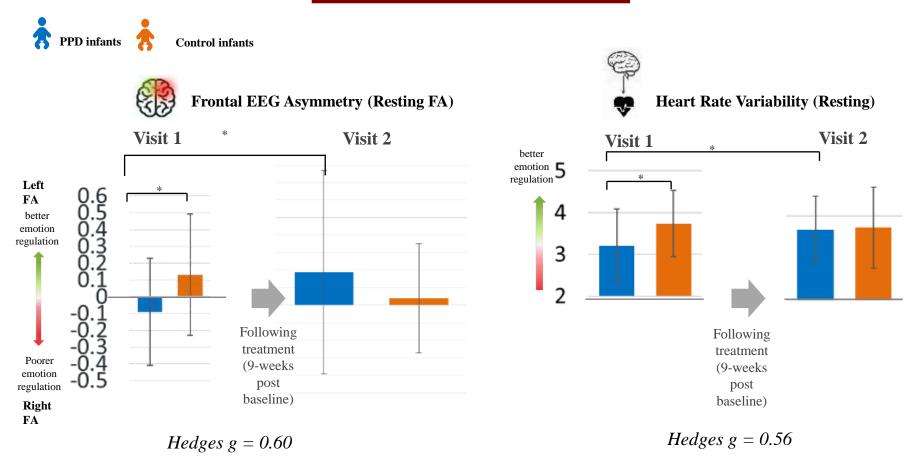

Sample Characteristics

TABLE 1 Sample characteristics

	Case (n	= 40)	Control	(n = 40)	p Value
Infant age, m (SD) mor	nths				
Visit 1	5.6	(2.7)	5.9	(2.6)	0.55
Visit 2	7.7	(2.7)	8.2	(2.7)	0.55
Infant sex, no (%) male	16	(40)	16	(40)	> 0.99
Total household incom	ne" m (SD)			
<49,999	8	(20)	5	(12)	0.66
50,000-79,999	10	(25)	11	(28)	
>80,000	22	(55)	24	(60)	
EPDS score m (SD)					
Visit 1	14.7	(5.4)	4.6	(3.4)	< 0.001
Visit 2	10.6	(5.3)	4.3	(4.2)	< 0.001
Maternal age, m (SD) years	32,3	(4.1)	32.7	(5.1)	0.68
Parity, no (%)					
Primiparous	21	(53)	22	(55)	> 0.99
Multiparous	19	(47)	18	(45)	
Marital status, no (%)					
Single	3	(8)	2	(5)	0.70
Separated	1	(2)	0	(0)	
Common-law	9	(22)	8	(20)	
Married	26	(68)	30	(75)	
Education, no (%)					
High school or less	5	(12)	3	(7)	0.70
College or certificate program	12	(30)	11	(28)	
University or higher	23	(58)	26	(65)	
Birthweight m (SD), grams	3329.5	(448.4)	3374.	9(475.2)	0.66
Gestational age m (SD) weeks	39.5	(2.2)	39.2	(1.1)	0.38

^aCanadian Dollars, median household income in Ontario is \$62,700.

Results: BBRF Study 1 (Infant ER)

*Maternal and paternal ratings of regulation behaviors also increased from Visit 1 to Visit 2 (d=0.29 and 0.35, respectively)²²

BBRF Study 2 (Mother-Infant Dyads)

- Infants rely on mothers to soothe them when distressed
- Mothers with PPD can struggle to do this

The Stillface Paradigm

Play (2 minutes)

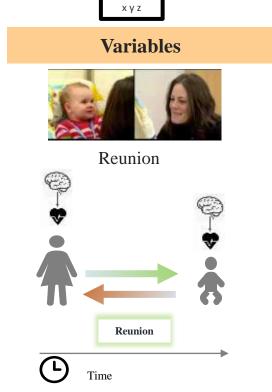
Stillface (2 minutes)

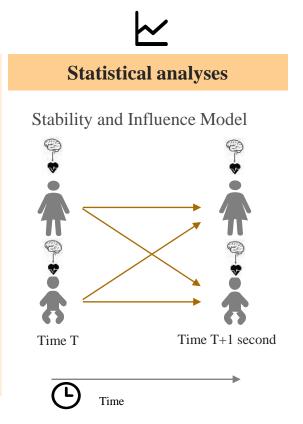
Reunion (2 minutes)

HRV underlies emotion regulation in mothers and children 23

- a) Does mother-infant HRV synchrony play a role in how mothers soothe their infants
- b) Does this improve following PPD treatment?

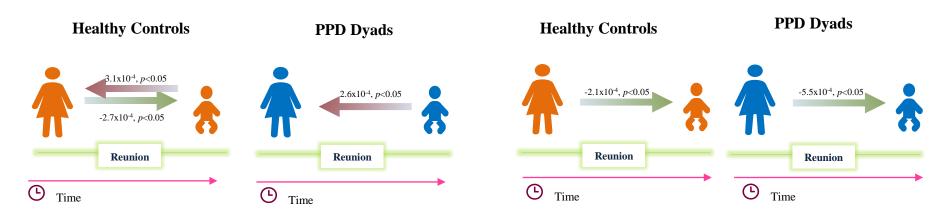
Method




Sample and Design

- Cases: n=40 dyads diagnosed with maternal PPD
- **Controls:** n=40 healthy controls without PPD

Matched on age, sex, SES



Results

Study Visit 2

Interpretation

- Adaptive changes in a mechanism though which mothers may actively regulate infant distress in real time
- Treating PPD may enable the mother to better respond to infant cues and provide support 24

Discussion

- Treating maternal PPD with CBT is associated with:
 - Improvements in infant ER
 - Improved dyadic regulation under stress
 - These may improve to levels seen in healthy control dyads in just 2 months
- CBT, a brief, cost-effective, preferred treatment for PPD could disrupt transmission of psychiatric risk

BBRF Study 1 (Infant ER)

- ER Improvements were of medium effect size
 - Consistent with previous infant ER studies using maternal self-report
- Mechanisms unclear
 - NOT due to changes in PPD symptoms, mother-infant bonding, maternal ER
 - ?↑ quality of maternal signals and/or contingent responsiveness

BBRF Study 2 (Mother-Infant Dyad)

- Baseline:
 - Healthy control mothers influenced their infants
 - PPD mothers influenced by their infants
- After treatment, PPD mothers influenced their infants (similar to healthy control mothers)
 - Mothers transmit regulatory inputs to distressed infants on a second-by-second basis
- This mechanism is malleable with treatment

Limitations

- Small sample
- Short duration of follow-up
- Observational study design
- Unknown mechanisms
- Uncertain brain changes

Future Research Directions

- Larger RCT
- Brain region/circuit changes (e.g., fNIRS)
- Further exploration of mechanisms
 - Maternal regulatory parenting (FFSF, PCERA)
 - Maternal mood variability or emotion regulation (Shannon's Entropy)
 - Physiological synchrony

Thank You

Awarding NARSAD Grants

Chaires de recherche du Canada Canada Research Chairs

Dr. John Krzeczkowski

Dr. Bahar Amani Ms. Haley Layton Niagara Region Public Health Kids Can Fly

References

- 1. Gavin NI, Gaynes BN, Lohr KN, Meltzer-Brody S, Gartlehner G, Swinson T. Perinatal Depression: A Systematic Review of Prevalence and Incidence. *Obstet Gynecol*. 2005;106(5):1071–83.
- 2. Meaney MJ. Perinatal maternal depressive symptoms as an issue for population health. *Am J Psychiatry*. 2018;175(11):1084-1093. doi:10.1176/appi.ajp.2018.17091031
- 3. Bauer A, Knapp M, Adelaja B. Best practice for perinatal mental health care: the economic case. *PSSRU Rep.* 2016.
- 4. Goodman SH, Rouse MH, Connell AM, Broth MR, Hall CM, Heyward D. Maternal depression and child psychopathology: a meta-analytic review. *Clin Child Fam Psychol Rev.* 2011;14(1):1-27.
- 5. Halligan SL, Murray L, Martins C, Cooper PJ. Maternal depression and psychiatric outcomes in adolescent offspring: A 13-year longitudinal study. *J Affect Disord*. 2007;97(1–3):145–54.
- 6. Netsi E, Pearson RM, Murray L, Cooper P, Craske MG, Stein A. Association of persistent and severe postnatal depression with child outcomes. *JAMA Psychiatry*. 2018;75(3):247-253.
- 7. Fox N. Dynamic Cerebral Processes Underlying Emotion Regulation. *Monogr Soc Res Child Dev.* 1994;59(2/3):152-166.
- 8. Diego, M. A., Jones, N. A., & Field, T. (2010). EEG in 1-week, 1-month, and 3-month-old infants of depressed and non-depressed mothers. Biological Psychology, 83(1), 7–14. https://doi.org/10.1016/j.biopsycho.2009.09.007
- 9. Field, T., Pickens, J., Fox, N. A., Nawrocki, T., & Gonzalez, J. (1995). Vagal tone in infants of depressed mothers. Development and Psychopathology, 7(2), 227–231
- 10. Moffitt, T. E., Arseneault, L., Belsky, D., Dickson, N., Hancox, R. J., Harrington, H., Houts, R., Poulton, R., Roberts, B. W., Ross, S., Sears, M. R., Thomson, W. M., & Caspi, A. (2011). A gradient of childhood self-control predicts health, wealth, and public safety. Proceedings of the National Academy of Sciences, 108(7), 2693–2698.
- 11. Beauchaine TP. Future Directions in emotion dysregulation and youth psychopathology. *J Clin child Adolesc Psychol*. 2015;4416(July):1-22.
- 12. Gianino, A., & Tronick, E. Z. (1988). The mutual regulation model: The infant's self and interactive regulation and coping and defensive capacities. In T. M. Field, P. M. McCabe, & S. Neil (Eds.), The Mutual Regulation Model: The Infant's Self and Interactive Regulation and Coping and Defensive Capacities. Lawrence Erbaum Associates.
- 13. Goodman SH, Gotlib IH. Risk for psychopathology in the children of depressed mothers: A developmental model for understanding mechanisms of transmission. *Psychol Rev.* 1999;106(3):458-490.
- 14. Feldman R, Granat A, Pariente C, Kanety H, Kuint J, Gilboa-Schechtman E. Maternal Depression and Anxiety Across the Postpartim Year and Infant Social Engagement, Fear Regulation, and Stress Reactivity. *J Am Acad Child Adolesc Psychiatry*. 2009;48(9):919-927

References

- 15. Esposito, G., Manian, N., Truzzi, A., & Bornstein, M. H. (2017). Response to infant cry in clinically depressed and non-depressed mothers. PLoS ONE, 12(1), e0169066.
- 16. Cicchetti, D., Rogosch, F. A., & Toth, S. L. (2000). The efficacy of toddler-parent psychotherapy for fostering cognitive development in offspring of depressed mothers. Journal of Abnormal Child Psychology, 28(2), 135–148.
- 17. Handley, E. D., Michl-Petzing, L. C., Rogosch, F. A., Cicchetti, D., & Toth, S. L. (2017). Developmental cascade effects of interpersonal psychotherapy for depressed mothers: Longitudinal associations with toddler attachment, temperament, and maternal parenting efficacy. Development and Psychopathology, 29(2), 601–615
- 18. Ammerman, R. T., Altaye, M., Putnam, F. W., Teeters, A. R., Zou, Y., & Van Ginkel, J. B. (2015). Depression improvement and parenting in low income mothers in home visiting. Archives of Women's Mental Health, 18(3), 555–563.
- 19. Bilszta, J. L. C., Buist, A. E., Wang, F., & Zulkefli, N. R. (2012). Use of video feedback intervention in an inpatient perinatal psychiatric setting to improve maternal parenting. Archives of Women's Mental Health, 15(4), 249–257.
- 20. Stein, A., Netsi, E., Lawrence, P. J., Granger, C., Kempton, C., Craske, M. G., Nickless, A., Mollison, J., Stewart, D. A., Rapa, E., West, V., Scerif, G., Cooper, P. J., & Murray, L. (2018). Mitigating the effect of persistent postnatal depression on child outcomes through an intervention to treat depression and improve parenting: a randomised controlled trial. The Lancet Psychiatry, 5(2), 134–144
- 21. Cohen, N. J., Lojkasek, M., Muir, E., Muir, R., & Parker, C. J. (2002). Sixmonth follow-up of two mother-infant psychotherapies: Convergence of therapeutic outcomes. Infant Mental Health Journal, 23(4), 361–380.
- 22. Krzeczkowski JE, Schmidt LA, Van Lieshout RJ. Changes in infant emotion regulation following maternal cognitive behavioral therapy for postpartum depression. *Depress Anxiety*. 2021;1-10.
- 23. Thayer, J. F., Åhs, F., Fredrikson, M., Sollers, J. J., III, & Wager, T. D. (2012). A meta-analysis of heart rate variability and neuroimaging studies: Implications for heart rate variability as a marker of stress and health. Neuroscience and Biobehavioral Reviews, 36(2), 747–756.
- 24. Krzeczkowski JE, Schmidt LA, Ferro MA, Van Lieshout RJ. Follow the leader: maternal transmission of physiological regulatory support to distressed infants in real-time. J Psychopathol Clin Sci. 2022; 131: 524-534.