Developing New Treatments for Childhood Anxiety and OCD: Can Cognitive Control Help Kids Grow Out of Illness?

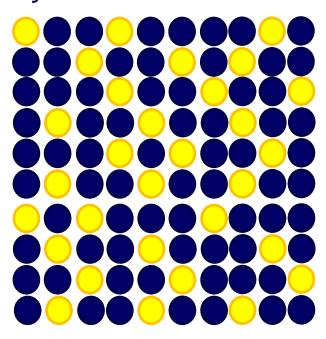
Kate D. Fitzgerald, MD
Ruane Professor of Child and Adolescent Psychiatry
Columbia University/New York State Psychiatric Institute

Anxiety Serves a Purpose

Anxiety/OCD: Normal to Disorder

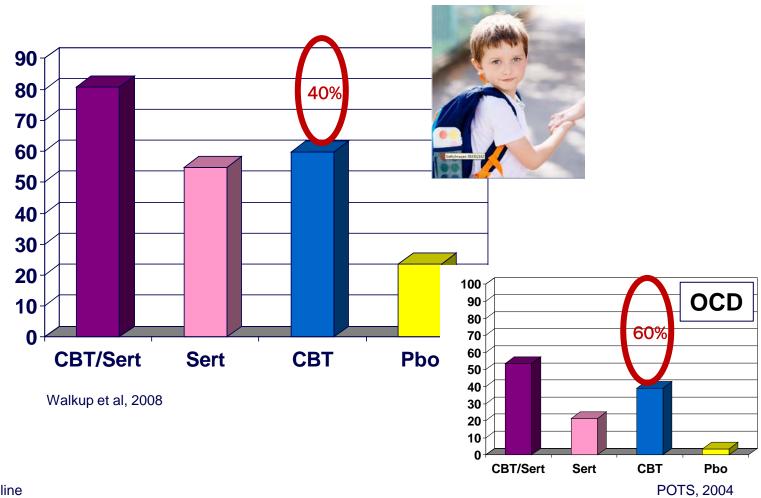
Age	Normative Development	Anxiety Disorder
Pre-school	imaginary, objects/situations	specific phobias, separation anxiety
Grade School	health/harm, competence	generalized anxiety disorder (GAD), obsessive- compulsive disorder (OCD)
Adolescence	social adequacy and performance	GAD, social phobia, panic

Intense Zero Frequent
Distressing
Difficult to control
Coto in the way

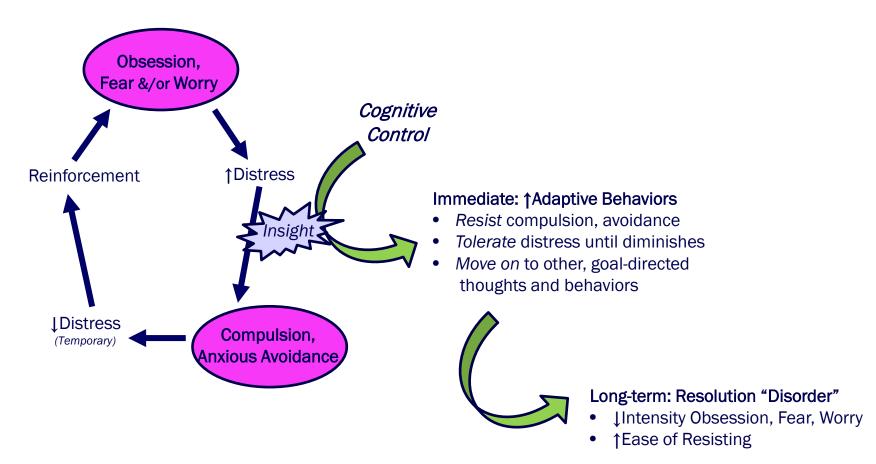

Gets in the way

Anxiety Problems Start EARLY

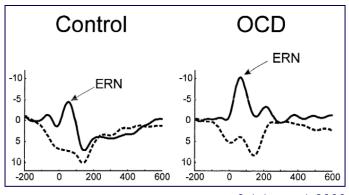
	Age 3 Assessment			Age 6 Assessment		
Disorder	N	%	95% CI	N	%	95% CI
Any diagnosis ^a	127	27.5	23.5-31.9	123	26.6	22.8-30.8
Any emotional disorder	91	19.7	16.2-23.7	87	18.8	15.5-22.7
Any depression ^b	6	(1.3)	0.6-2.8	25	5.4	3.7-7.9
Major depression or dysthymia	2	0.4	0.1-1.6	15	3.2	2.0-5.3
Depression not otherwise specified	4	0.9	0.3-2.2	10	2.2	1.2-3.9
Any anxiety disorder	89	(19.3)	15.9-23.1	72	(15.6)	12.6-19.2
Specific phobia	44	9.5	7.2-12.5	38	8.2	6.1-11.1
Separation anxiety	26	5.6	3.9-8.1	22	4.8	3.2-7.1
Social phobia	17	3.7	2.3-5.8	10	2.2	1.2-3.9
Generalized anxiety disorder ^b	18	3.9	2.5-6.1	7	1.5	0.7-3.1
Agoraphobia	15	3.2	2.0-5.3	8	1.7	0.9-3.4
Selective mutism	7	1.5	0.7-3.1	3	0.6	0.2-1.9
Any behavioral disorder	51	11.0	8.4-14.3	57	12.3	9.7-15.7
ADH D ^b	11	2.4	1.3-4.2	25	5.4	3.7-7.9
Oppositional defiant disorder	47	10.2	7.7-13.3	41	8.9	6.6-11.8
Two or more diagnoses	42	9.1	6.8-12.1	41	8.9	6.6-11.8


Who Do Clinically Anxious Children Grow Up to Be?

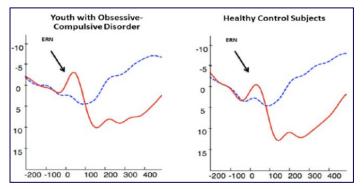
1 in 3 with anxiety disorder by adolescence!

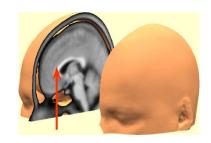


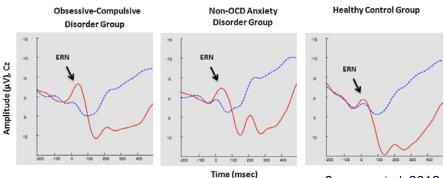
How Can We Help?



How does CBT work?


Cognitive Control: Breaking the Vicious Cycle


Error-related Negativity (ERN) in OCD/Anxiety

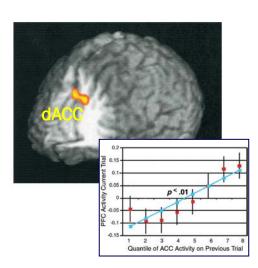

Gehring et al, 2000

Hanna et al, 2012

Anterior Cingulate Cortex (ACC)

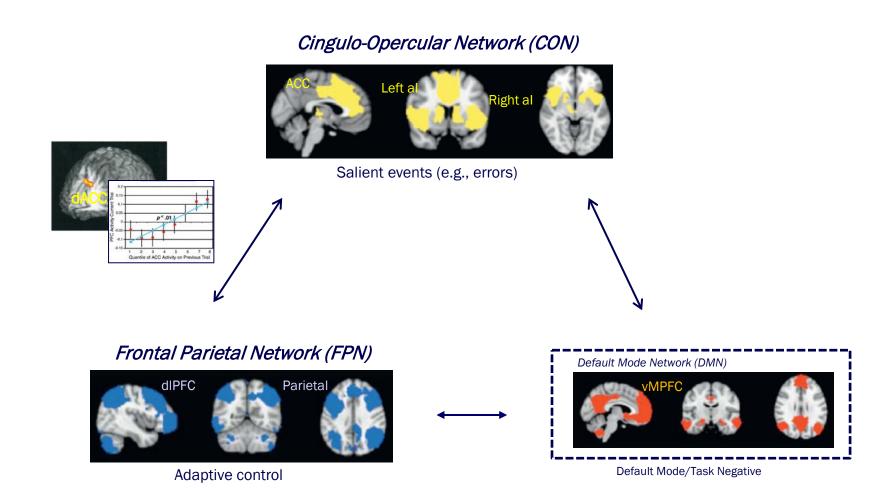
Carrasco et al, 2013

ERN in Anxiety/OCD: Functional Significance?



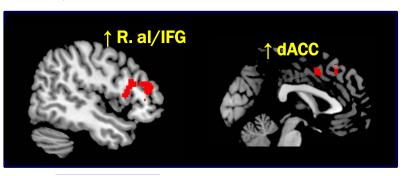
Affective response?

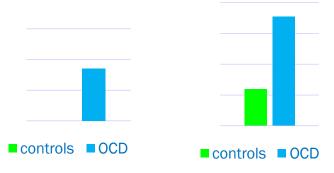
- Worse than expected outcome
- Large ERN = affective hypersensitivity to errors?
- A bad thing? (drive OCD)
 - Intrusive sense that "something is wrong" characterizes OCD symptoms


Adaptive response?

- Mismatch between actual and intended response
- Large ERN = make up for inefficiency elsewhere in error-processing network?
- A good thing? (compensate for OCD)
 Does ERN overcome deficient capacity to adjust behavior?
 (move on from anxious thoughts appropriately identified as "thinking errors")

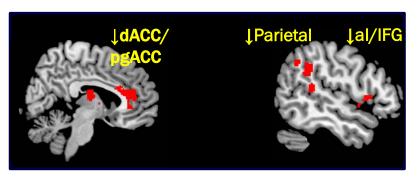
Where does Cognitive Control come from?

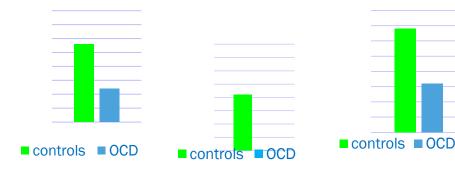

Task Positive or "Control" Networks



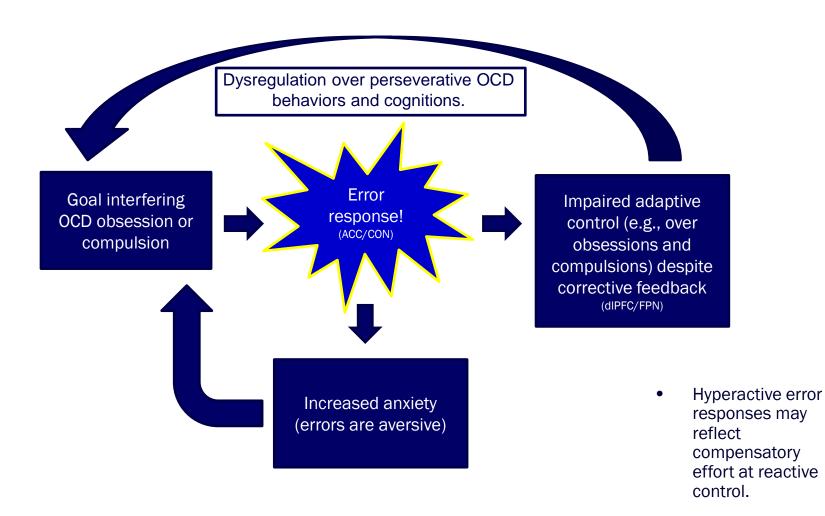
Neural Networks for Cognitive Control

Another example from OCD

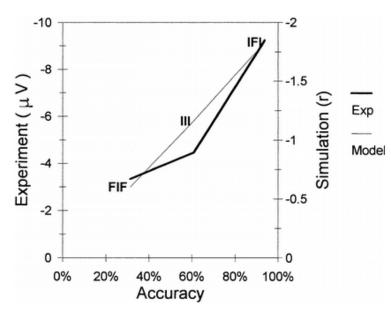

Errors: ↑ Cingulo-opercular Network (CON)



N = 239 OCD, 231 HC


Inhibitory control *: \(\) CON, Frontoparietal Network (FPN)

N = 245 OCD, 239 HC

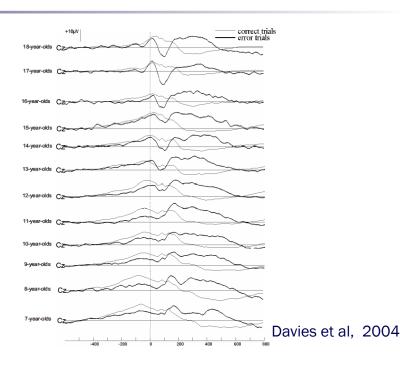
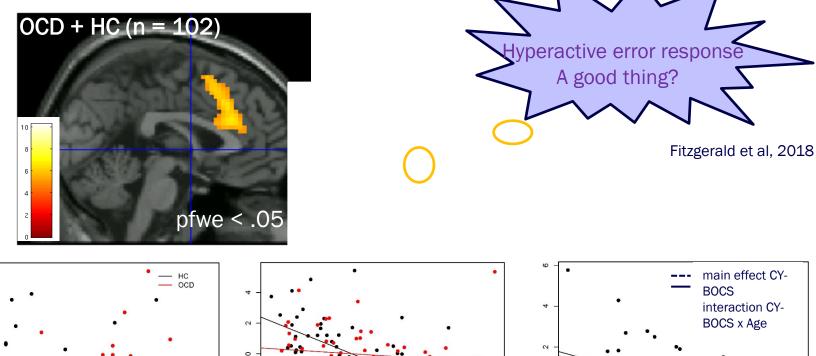

Errors and Inhibitory Control in OCD

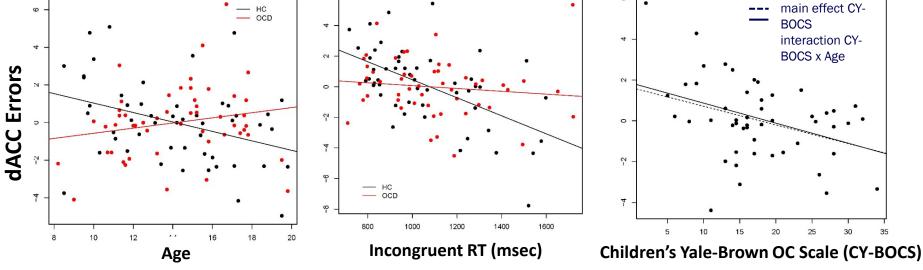
ACC-based Response to Errors

Helpful, hurtful, and/or different with age?

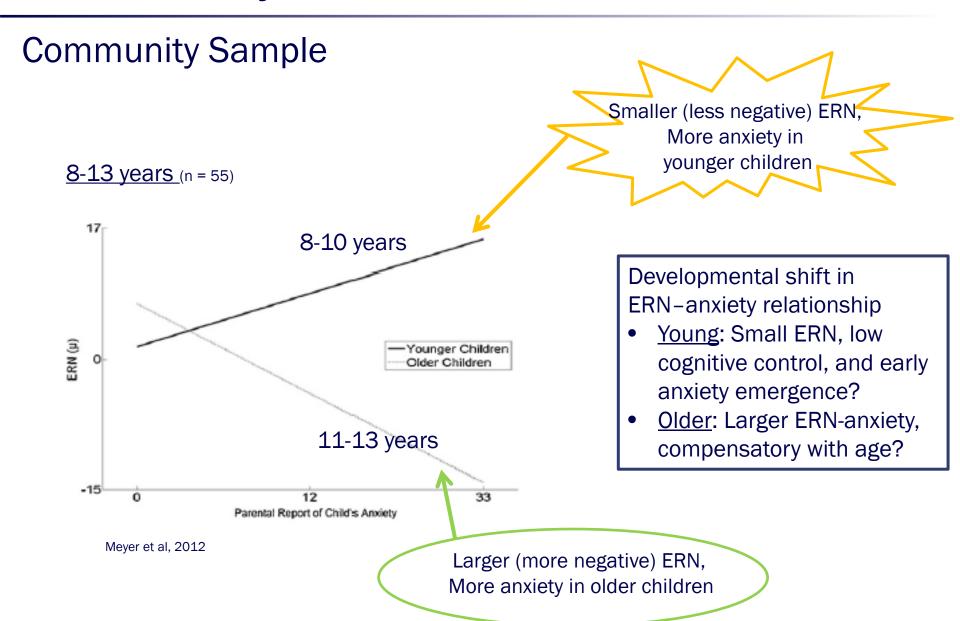
Larger ERN, Better Performance, Older Age

Holroyd and Coles, 2012 (n = 15, adults)

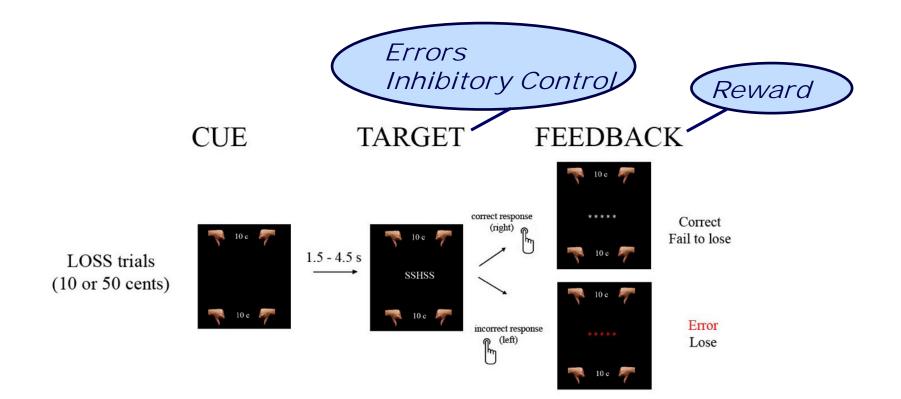

Table 2. Bivariate Correlations Between ERN and P_e Amplitude (μV) in Error Trials and Amplitude (μV) of Correct Trials at Midline Sites and Behavioral Measures With Outliers Removed

	Δ ERN at C_x	ERN at F _z	CRN at F _x	P_e at P_z
	DERIVAT Cz	Likiy at F _z	CRIVATE	r _e at r _z
Total Correct Responses on Go Trials	07 (N = 308)	.01 (N = 308)	.10 (N = 311)	.15*(N=307)
Reaction Time on Correct Responses on	.14*(N = 312)	.02 (N = 312)	16*(N = 316)	20**(N = 311)
Go Trials				
Total Correct No-Go Trials	20**(N = 314)	13 (N = 314)	.02 (N = 317)	.22***(N=313)
Total Errors of Commission	$.15^{**} (N = 308)$.10 (N = 308)	05 (N = 311)	25****(N=307)
Reaction Time on Errors of Commission	$.12^* (N = 313)$.01 (N = 313)	13 (N = 316)	21****(N = 312)
Total Errors of Omission	.20**(N = 304)	.07 (N = 304)	09 (N = 307)	27^{***} (N = 303)
Total Correct Go Trials Following	$.13^* (N = 311)$.08 (N = 311)	02 (N = 314)	18^{***} (N = 310)
Errors of Commission				
Reaction Time on Correct Go Trials	.11 (N = 313)	.06 (N = 313)	07 (N = 317)	13*(N = 312)
Following Errors of Commission				
Total Accuracy	23**(N = 308)	14 (N = 307)	.06 (N = 310)	$.27^{***} (N = 306)$


Greater Error Response in Child OCD:

Medicated, older age, less OCD, better performance

ERN, Anxiety & Children



TCN & Symptom Change in OCD

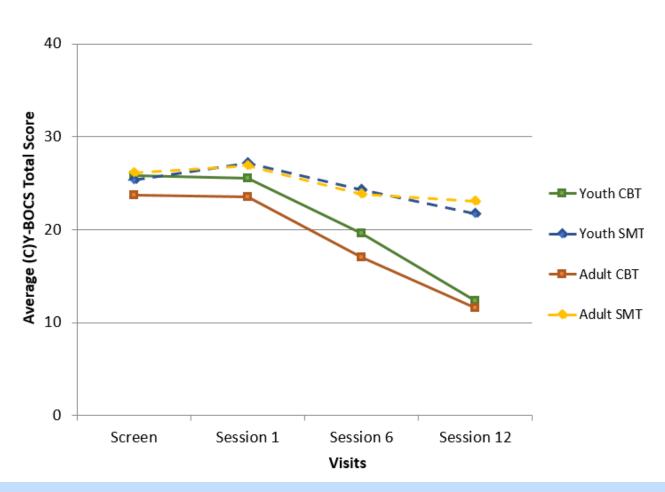
Can Task Control Network (TCN) Function Predict Symptom Change?

OCD-CBT: Study Design

- Randomized trial: CBT vs. stress management training (SMT)
- 42 CBT, 45 SMT patients with OCD
 - Teens (13-17) & adults (25-45)
 - Onset age 15 years, (C)Y-BOCS ≥ 16, half medicated
 - Pre- to post-therapy: fMRI, Incentive Flanker Task

OCD-CBT: Hypotheses

<u>Central Hypothesis</u>: More Cognitive Control in Brain → Better CBT Response in Adolescent/Adult OCD

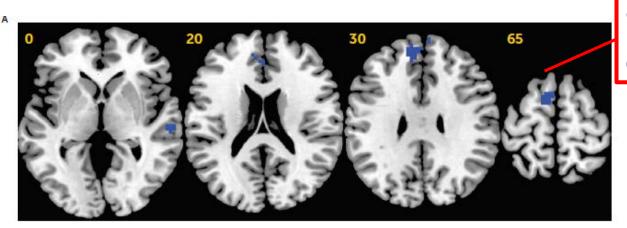

More "normal" baseline TCN function → Better CBT outcomes?

- 1. <u>Errors</u>: \(CON (More efficient? Less need to compensate?)
- 2. <u>Inhibitory control</u>: ↑ CON, ↑ FPN (More inhibitory control)
- 3. Reward: ↑ orbito-frontal cortex (OFC, Motivation)

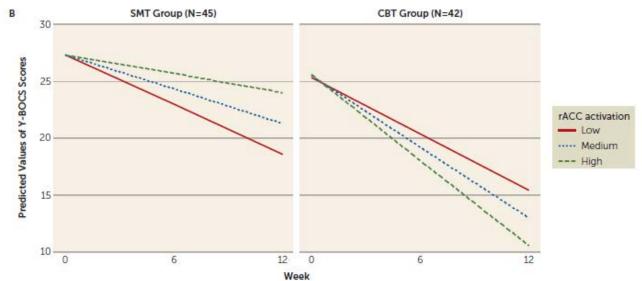
Patient Characteristics

	CBT		SMT		
	Adolescents (n = 19)	Adults (n = 23)	Adolescents (n = 20)	Adults (n = 25)	
Age (years)	15.5 ± 1.6	31.4 ± 5.8	15.4 ± 1.8	31.8 ± 5.6	
YBOCS (Baseline)	26.7 ± 5.6	23.7 ± 5.0	28.1 ± 5.2	26.9± 4.0	

Treatment Response: CBT vs SMT

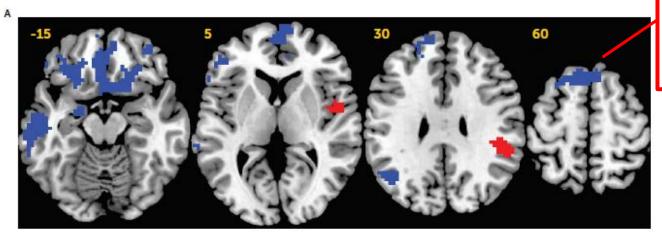


OCD severity reduced after CBT & SMT, but CBT significantly more effective.

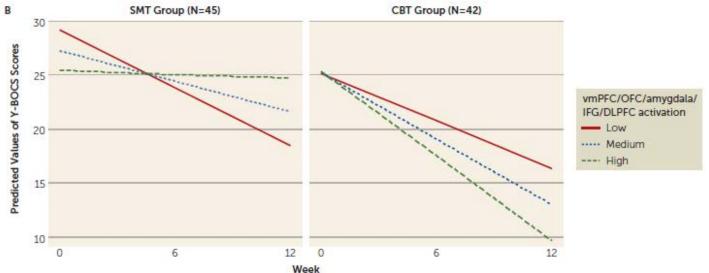

And, brain predictors.....

Neural Predictors: CBT-Specific (CBT x SMT interaction)

Inhibitory Control (cognitive interference)

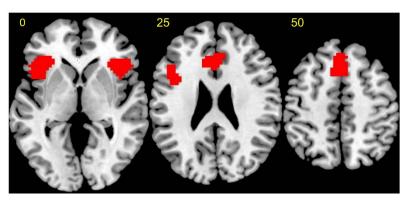


Greater ACC response during inhibitory control predicts **better** outcomes in CBT, but *opposite* for SMT.



Neural Predictors: CBT-Specific (CBT x SMT interaction)

Reward Processing

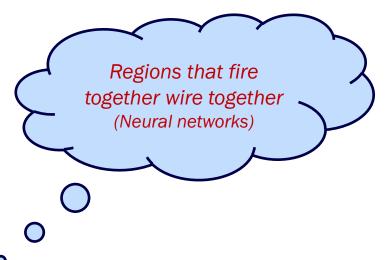


Greater OFC response during reward predicts **better** outcomes in CBT, but *opposite* for SMT.

Neural Predictors

Errors

Baseline activation

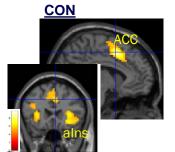

not significant

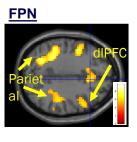
Baseline activation as predictor

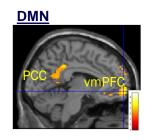
- ACC engaged by errors....but not predictive to CBT response
- Caveat: lower power due to smaller number of trials

Conclusions: OCD-CBT Incentive Flanker Task

- Greater baseline inhibitory control (ACC) and reward (OFC) function enables patients to benefit from CBT
 - ACC-based inhibitory control: Dismiss obsessions, resist compulsions and engage in CBT
 - OFC-based Reward: Motivation to implement adaptive control required by CBT
- Specific to CBT
- Can further boosting ACC-indexed cognitive control function help resolve symptoms?

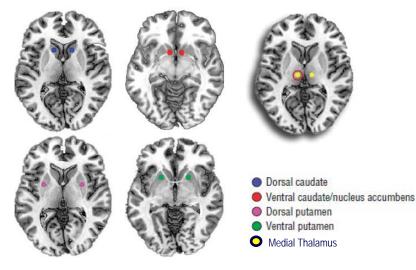



Can resting state connectivity in cortical-subcortical networks for cognitive control predict CBT outcomes?


Different predictors at different ages?

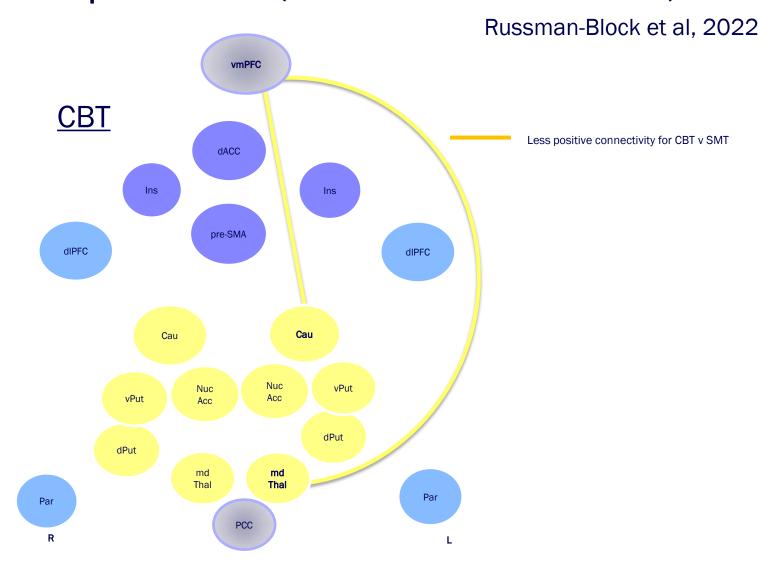
Resting State Connectivity Analysis

Task Control Networks



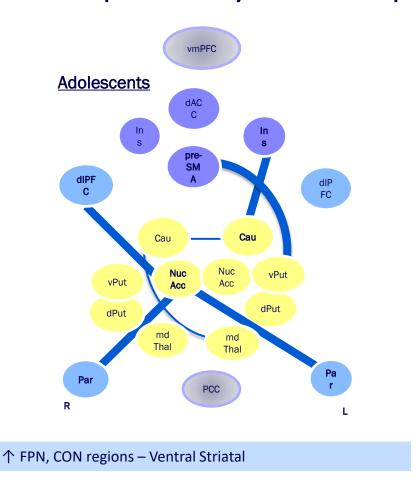
(from IFT in same subjects)

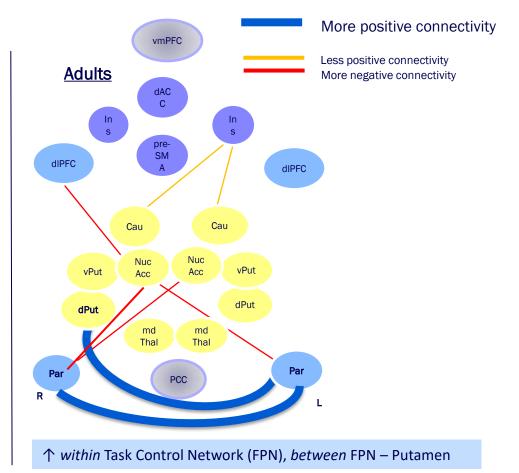
Subcortical



^{*}Dimartino et al, 2008

^{*}Harrison et al, 2009

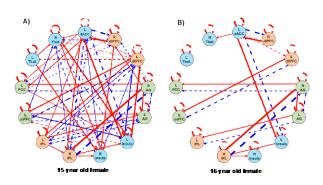

^{*}Fitzgerald eta I, 2011

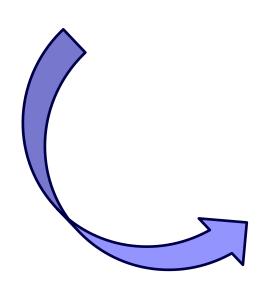

CBT-selective predictors (across Adolescents and Adult)

↓ DMN (vmPFC) - Subcortical: Less positive connectivity, better CBT response

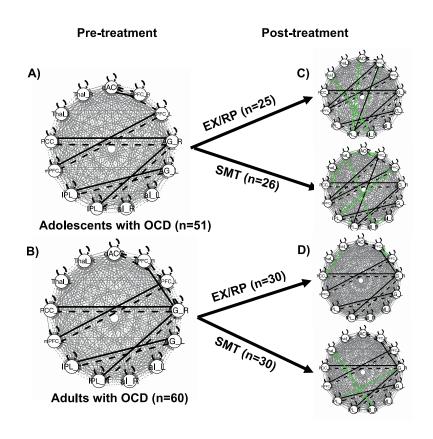
Developmentally sensitive predictors

Conclusions: rsfcMRI predictors

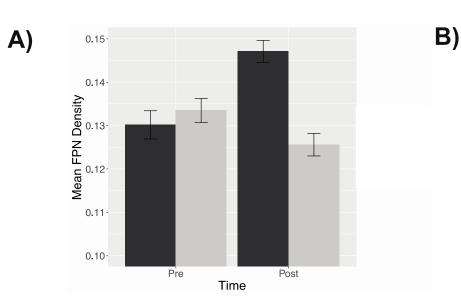

- CBT-specific:
 - \u00edvmPFC Subcortical connectivity
 - Less affective influence over action selection?
- Developmentally sensitive predictors:
 - Adolescents: \frac{FPN, CON subcortical reward circuitry (nuc accumbens)
 - Dismiss OC urges in favor of goal-directed behaviors, across psychotherapies?
 - Adults: \fPN subcortical motor circuity (dPut)
 - Resist compulsive urges, across psychotherapies?
 - Developmental sensitive predictors = non-specific (i.e., predictive across CBT, SMT)

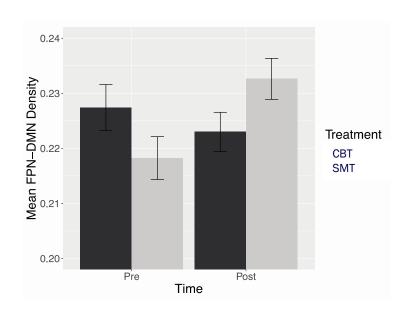

OCD-CBT GIMME: Searching for CBT Mechanism

- Why predictor findings only?
 - Group Averaging Methods → Null Results (NCT02437773)
 - Are we throwing out the baby (i.e, individual differences) with the bathwater (change signal)?
- Group Iterative Multi-level Modelling (GIMME)
 - Individual Heterogeneity
 - Person-specific and group-level information
 - Task-based functional network connectivity
 - FPN, CON, DMN (13 nodes, Seitzman atlas)
 - # of connections within and between networks
 - Contemporaneous and lagged connections across task (IFT)
 - Models: Treatment Condition (CBT, SMT), Time, Age Group effects


OCD-CBT GIMME

Individual Differences

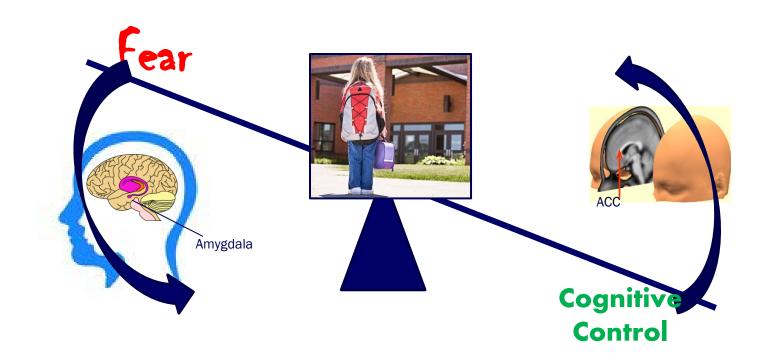



Group-level models

CBT-specific tripartite network change

↑ FPN Connectivity
(within network)

↓ FPN – DMN Connectivity (between networks)


Conclusions: OCD-CBT GIMME

- CBT-specific changes
 - —↑FPN, ↓ FPN-DMN
- Stable across adolescent and adult patients
 - –Shift functional tripartite network connections towards maturity across the age span?

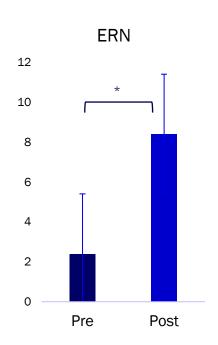
Anxiety in Early Childhood

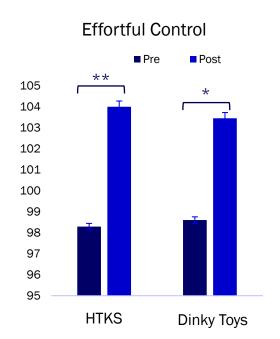
Can cognitive control be trained to reduce anxiety symptoms?

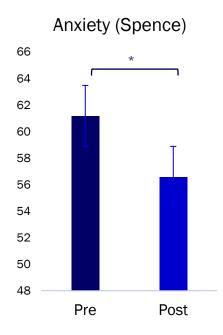
Kidpower: Training the brain in anxious preschoolers

Kidpower: Training the Brain

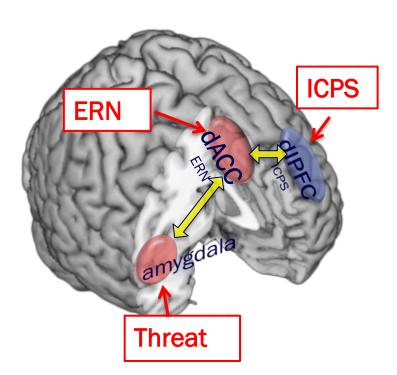
Kidpower Kids


Measures	Completers (n=32)	Non-completers (n = 12)	Test statistics
Age (years)	5.66 ± .7 (4.25-6.99)	5.08 ± 1.0 (4.00-6.75)	t(15.44) = 1.81 p = .09
Gender	18F (56%)	7F (58%)	$X^2 = 0.015$, df = 1, p = 1.00
Spence PAS (t-scores)	62.7 ± 10.9 (41.00-87.00)	63.64 ± 15.7 (44.00-85.00)	t(13.47) = 0.19 p = .86
CBCL, ADHD	55.56 ± 5.66 (50.00-73.00)	56.00 ± 6.72 (50.00-71.00)	t(41) = 0.21 p = .83


N = 44 enrolled, t-score ≥ 60 on CBCL DSM-Anxiety subscale


N = 32 completers (pre/post assessments, ≥ 3 days of 4-day camp)

Kidpower: Effects of Intervention



Kidpower: Next steps

- Randomized trial of Kidpower vs. Playgroup control
- Continue collecting ERN as index of ACC-based cingulo-opercular network for salience detection
- Add Interchannel Phase Synchrony (ICPS) to index dIPFC-based frontal parietal network (FPN) for adaptive control
- Add behavioral assessment of fear

Can brain be modulated to stop anxiety and OCD early?

- TPN networks relevant to expression of OCD and anxiety
- Relevance of development?
 - Yes! Age-specific involvement of ERN in expression of OCD and anxiety symptoms
 - But...some functional relations may be conserved at some ages (e.g., OCD-CBT)
- Experimental strategies: Kidpower +/- CBT +/- Reward contingencies
 - Kidpower vs. exposure-based CBT vs combination?
 - Treatment Selection, guided by brain
 - Other neuromodulatory techniques
 - Cognitive training apps (e.g., Aklili)
 - Transcranial magnetic stimulation
- How do neural systems for Cognitive Control/Fear/Reward interact?
- Long-term goal: Brain-based personalization
 - Different modulation, different child-specific "profiles" (Cognitive control, Fear, Reward)

Thank You!

- Jim Abelson, MD, PhD
- Angela Ayoub, LMSW
- Emily Bilek, PhD
- Katie Check, LMSW
- C. Emily Durbin, PhD
- Liz Duval, PhD
- Greg Hanna, MD
- Amanda Hicks, LLP
- Joe Himle, PhD
- Faith Horbatch, BA

- Jessica Hruschak, BA
- Ka Ip, MS
- Tim Johnson, PhD
- Eunice Kim, BA
- Jamie Lawler, PhD
- Yanni Liu, PhD
- Sharon Lo, MS
- Riley Lowe, BA
- Kristin Manella, BA
- Brody Mantha, LLMSW

- Chris Monk, PhD
- Frederick Morrison, PhD
- Jason Moser, PhD
- Maria Muzik, MD
- Jennifer Nidetz, LMSW
- Luke Norman, PhD
- Lisa O'Donnell, PhD
- Luan Phan, MD
- Scott Peltier, PhD
- Julie Premo, PhD
- Aileen Prout, LMSW

- Andrea Roberts, MS
- Kate Rosenblum, PhD
- Meryl Rueppel
- Katherine Raguckas
- Laura Stchur, LMSW
- Cameron Strong, BA
- Ashley Synger, MA
- Steve Taylor, MD
- Lauren Warsinske, LLMSW
- Robert Welsh, PhD
- Huan Yang, MD

STUDY FAMILIES!!!

